

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Topic: 2.8 – LATIN SQUARE DESIGN

that In takin square the data are classified in 3 different evilence that is column, now, breatment which are arranged in a square, the square called as latin square.

Latin square is one way top reducing bample time, this design as very popularly used in a square in a square, where it is not possible to have large number of subjects.

merite on advantages:

mente et advanteges.

Later seguine design controle variables in

tere directions of the associamental material.

* The analysis of the design in simple and

Moneyto personal and it is a 3 way

blossification of analysis.

* The process of markomyption is not as simple

as PBD.

* The number of theatments should be

Legisl to the number of months of months be

2×2 matrix is not possible.

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

SSR :
$$\frac{(E \times I)^2}{N_1} + \frac{(E \times 2)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times 2)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times I)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times I)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times I)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times I)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times I)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times I)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times I)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \frac{(E \times I)^2}{N_2} + \dots - \frac{T^2}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \dots - \frac{I}{N}$

SSR : $\frac{(E \times I)^2}{N_2} + \dots -$

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Source Vanisa	sum of squares	4.0.0	of square	Ratio (2.4)) Ta
B/W	550	E-1	pusc	MSE > MSE FE = MSE NISE	Fc(
B/W	SSR	12-1	MC R	MER > MSE	Fec
8/00	SST	14-1	MST	FR - MAR	FT
Esnel	SSE V	e-1)(1e-1)	MSE	EN MEE	116