

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Topic: 3.7 – Gauss Seidal Iterative method

$$x = \frac{1}{8} \left[20 + 3y - 2z \right]$$
 $y = \frac{1}{11} \left[33 - 4x + z \right]$
 $z = \frac{1}{12} \left[35 - 6x - 3y \right]$
 $z = \frac{1}{12} \left[35 - 6x - 3y \right]$
We start with the initial values
 $(x, y, z) = (0, 0, 0)$

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Iteration	X	y	Z
1	2.5	2.091	1.144
2	2.998	2.014	0.914
3	3. 027	1.982	0.908
4	3.016	1.986	0.912
5	3.017	1.986	0.912
6	3.017	1.986	0.912

: The solution is
$$x = 3.017$$

 $y = 1.986$
 $z = 0.912$

```
3) Salve by Grauss - Seidel method:

28x + 4y - 2 = 32; x + 3y + 10 z = 24;

2x + 17y + 4z = 35.
```


Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

For Solving
$$x, y, z$$
, we get
$$z = \frac{1}{28} \left[32 - 4y + z \right]$$

$$y = \frac{1}{17} \left[35 - 2x - 4z \right]$$

$$z = \frac{1}{10} \left[24 - x - 3y \right]$$
we start with the initial values
$$(x, y, z) = (0, 0, 0)$$
The iteration values are tabulated as
follows:

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Iteration	Open with Google Docs 🔻	y	Z
1	1.1429	1.9244	1.70%
2	0.9290	1.5476	1.8428
3	0.9876	1.5090	1.8485
4	0.9933	1.5070	1 · 8486
5	0.9936	1.5070	1-8486
6	0.9936	1.5070	1 - 8486

:. The solution is
$$\alpha = 0.9936$$

 $y = 1.5070$
 $z = 1.8486$

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

4 solve by Gauss-scidel method:

$$4x + 2y + z = 14$$
, $x + 5y - z = 10$, $x + y + 8z = 20$.
The given system is diagonally dominant.
Solving for x, y, z we get.
 $x = \frac{1}{4} [14 - 2y - z]$