
Analysis of Sequential Circuits 

The behaviour of a sequential circuit is determined from the inputs, the outputs and the 

states of its flip-flops. Both the output and the next state are a function of the inputs and 

the present state. The suggested analysis procedure of a sequential circuit is set out. 

 

Analysis procedure of sequential circuits. 

It is started with the logic schematic from which we can derive excitation equations for 

each flip-flop input. Then, to obtain next-state equations, insert the excitation equations 

into the characteristic equations. The output equations can be derived from the 

schematic, and once we have our output and next-state equations, can generate the 



next-state and output tables as well as state diagrams. When we reach this stage, we use 

either the table or the state diagram to develop a timing diagram which can be verified 

through simulation. 

 

Derive the state table and state diagram for the sequential circuit.  

 

Logic schematic of a sequential circuit. 

SOLUTION: 

STEP 1: First we derive the Boolean expressions for the inputs of each flip-flops in the 

schematic, in terms of external input Cnt and the flip-flop outputs Q1 and Q0. Since 

there are two D flip-flops in this example, we derive two expressions for D1 and D0: 

D0 = Cnt Q0 = Cnt'*Q0 + Cnt*Q0' 

D1 = Cnt'*Q1 + Cnt*Q1'*Q0 + Cnt*Q1*Q0' 

These Boolean expressions are called excitation equations since they represent the 

inputs to the flip-flops of the sequential circuit in the next clock cycle. 

STEP 2: Derive the next-state equations by converting these excitation equations into 

flip-flop characteristic equations. In the case of D flip-flops, Q(next) = D. Therefore the 

next state equal the excitation equations. 

Q0(next) = D0 = Cnt'*Q0 + Cnt*Q0' 

Q1(next) = D1 = Cnt'*Q1 + Cnt*Q1'*Q0 + Cnt*Q1*Q0' 

STEP 3: Now convert these next-state equations into tabular form called the next-state 

table. 



 

Each row is corresponding to a state of the sequential circuit and each column 

represents one set of input values. Since have two flip-flops, the number of possible 

states is four - that is, Q1Q0 can be equal to 00, 01, 10, or 11. These are present states as 

shown in the table. 

For the next state part of the table, each entry defines the value of the sequential circuit 

in the next clock cycle after the rising edge of the Clk. Since this value depends on the 

present state and the value of the input signals, the next state table will contain one 

column for each assignment of binary values to the input signals. In this example, since 

there is only one input signal, Cnt, the next-state table shown has only two columns, 

corresponding to Cnt = 0 and Cnt = 1. 

Note that each entry in the next-state table indicates the values of the flip-flops in the 

next state if their value in the present state is in the row header and the input values in 

the column header. 

Each of these next-state values has been computed from the next-state equations in 

STEP 2. 

STEP 4: The state diagram is generated directly from the next-state table. 

 



Each arc is labelled with the values of the input signals that cause the transition from 

the present state (the source of the arc) to the next state (the destination of the arc). 

In general, the number of states in a next-state table or a state diagram will equal 2m , 

where m is the number of flip-flops. Similarly, the number of arcs will equal 2m x 2k , 

where k is the number of binary input signals. Therefore, in the state diagram, there 

must be four states and eight transitions. Following these transition arcs, that as long as 

Cnt = 1, the sequential circuit goes through the states in the following sequence: 

0, 1, 2, 3, 0, 1, 2,.... On the other hand, when Cnt = 0, the circuit stays in its present state 

until Cnt changes to 1, at which the counting continues. 

Since this sequence is characteristic of modulo-4 counting, it can conclude that the 

sequential circuit is a modulo-4 counter with one control signal, Cnt, which enables 

counting when Cnt = 1 and disables it when Cnt = 0. 

Below, we show a timing diagram, representing four clock cycles, which enables to 

observe the behaviour of the counter in greater detail. 

 

 

Timing Diagram 

In this timing diagram assumed that Cnt is asserted in clock cycle 0 at t0 and is 

disasserted in clock cycle 3 at time t4. We have also assumed that the counter is in state 

Q1Q0 = 00 in the clock cycle 0. Note that on the clock's rising edge, at t1, the counter will 

go to state Q1Q0 = 01 with a slight propagation delay; in cycle 2, after t2, to Q1Q0 = 10; 

and in cycle 3, after t3 to Q1Q0 = 11. Since Cnt becomes 0 at t4, know that the counter 

will stay in state Q1Q0 = 11 in the next clock cycle. 

 


