SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641107
An Autonomous Institution
Accredited by NAAC - UGC with 'A' Grade
Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

COURSE NAME :19CS407 DATA ANALYTICS WITH R
 II YEAR /IV SEMESTER

Unit 4- R PROGRAMMING BASICS

Topic: Vectors, Factors

R - Vectors

\checkmark Vectors are the most basic R data objects and there are six types of atomic vectors. They are logical, integer, double, complex, character and raw.

Vector Creation

\#Single Element Vector

Even when you write just one value in R, it becomes a vector of length 1 and belongs to one of the above vector types
\# Atomic vector of type character.
print("abc");
\# Atomic vector of type double.
print(12.5)
\# Atomic vector of type integer.
print(63L)
\# Atomic vector of type logical.
print(TRUE)

Vector Creation

[1] 5678910111213
[1] 6.67 .68 .69 .610 .611 .612 .6
[1] 3.84 .85 .86 .87 .88 .89 .810 .8

Vector Creation

Using sequence (Seq.) operator

\# Create vector with elements from 5 to 9 incrementing by 0.4 .
$\operatorname{print}(\operatorname{seq}(5,9$, by $=0.4)$)
When we execute the above code, it produces the following result -
[1] 5.0 5.4 5.8 6.26 .67 .07 .47 .88 .28 .69 .0

Using the c() function

The non-character values are coerced to character type if one of the elements is a character.
\# The logical and numeric values are converted to characters.
s <- c('apple','red',5,TRUE)
print(s)
Output:
[1] "apple" "red" "5" "TRUE

Accessing Vector Elements

Elements of a Vector are accessed using indexing. The [] brackets are used for indexing. Indexing starts with position 1. Giving a negative value in the index drops that element from result. TRUE, FALSE or 0 and 1 can also be used for indexing.
\# Accessing vector elements using position.
t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")
$u<-\mathrm{t}[\mathrm{c}(2,3,6)]$
print(u)
\# Accessing vector elements using logical indexing.
$\mathrm{v}<-\mathrm{t}[\mathrm{c}(\mathrm{TRUE}, \mathrm{FALSE}, F A L S E, F A L S E, F A L S E, T R U E, F A L S E)]$
print(V)
\# Accessing vector elements using negative indexing.
$\mathrm{x}<-\mathrm{t}[\mathrm{c}(-2,-5)]$
print(x)
\# Accessing vector elements using $0 / 1$ indexing.
$\mathrm{y}<-\mathrm{t}[\mathrm{c}(0,0,0,0,0,0,1)]$
print(y)

Output:

[1] "Mon" "Tue" "Fri"
[1] "Sun" "Fri"
[1] "Sun" "Tue" "Wed" "Fri" "Sat"
[1] "Sun"

Vector Manipulation

Vector arithmetic

Two vectors of same length can be added, subtracted, multiplied or divided giving the result as a vector output.
\# Create two vectors.
v1 <- c(3,8,4,5,0,11)
v2 <- c(4,11, $0,8,1,2)$
\# Vector addition.
add.result <- v1+v2
print(add.result)
\# Vector subtraction.
sub.result <- v1-v2
print(sub.result)
\# Vector multiplication.
multi.result <- v1*v2
print(multi.result)
\# Vector division.
divi.result <- v1/v2
print(divi.result)
[1] 719413113
[1]-1-3 4-3-1 9
[1] 1288040022
[1] $0.7500000 \quad 0.7272727$
Inf
0.62500000 .00000005 .5000000

Vector Manipulation

[1] 719816422
[1] $-1-3 \quad 0-6-40$

Vector Manipulation

Vector Element Sorting

Elements in a vector can be sorted using the sort() function.
v <- c(3,8,4,5,0,11, -9, 304)
\# Sort the elements of the vector.
sort.result <- sort(v)
print(sort.result)
\# Sort the elements in the reverse order.
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)
\# Sorting character vectors.
v <- c("Red","Blue","yellow","violet")
sort.result <- sort(v)
print(sort.result)
\# Sorting character vectors in reverse order.
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)
[1] -9603145811304
[1] $304118154 c c c c c$
[1] "Blue" "Red" "violet" "yellow"
[1] "yellow" "violet" "Red" "Blue"

R - Factors

Factors are the data objects which are used to categorize the data and store it as levels. They can store both strings and integers. They are useful in the columns which have a limited number of unique values. Like "Male, "Female" and True, False etc. They are useful in data analysis for statistical modeling.

Factors are created using the factor () function by taking a vector as input.

R - Factors

```
# Create a vector as input.
data <-
c("East","West","East","North","North","East",
"West","West","West","East","North")
print(data)
print(is.factor(data))
# Apply the factor function.
factor_data <- factor(data)
print(factor_data)
print(is.factor(factor_data))
```

[1] "East" "West" "East" "North" "North"
"East" "West" "West" "West" "East" "North"
[1] FALSE
[1] East West East North North East West
West West East North
Levels: East North West
[1] TRUE

Factors in Data Frame

On creating any data frame with a column of text data, R treats the text column as categorical data and creates factors on it.
\# Create the vectors for data frame.
height <- c(132,151,162,139,166,147,122)
weight <- c(48,49,66,53,67,52,40)
gender
c("male","male","female","female","male","female"," male")
\# Create the data frame.
input_data <- data.frame(height,weight,gender)
print(input_data)
\# Test if the gender column is a factor.
print(is.factor(input_data\$gender))
\# Print the gender column so see the levels.
print(input_data\$gender)
Output:
height weight gender
13248 male
$\begin{array}{lll}2 & 151 & 49\end{array}$
$3162 \quad 66$ female
$4 \quad 139 \quad 53$ female
$\begin{array}{lll}5 & 166 & 67\end{array}$
$\begin{array}{llll}6 & 147 & 52 & \text { female }\end{array}$
$\begin{array}{lll}7 & 122 & 40\end{array}$
[1] TRUE
[1] male male female female male female male Levels: female male

Changing the Order of Levels

The order of the levels in a factor can be changed by applying the factor function again with new order of the levels.
data <- c("East","West","East","North","North","East","West", "West","West","East","North")
\# Create the factors
factor_data <- factor(data)
print(factor_data)
\# Apply the factor function with required order of the level.
new_order_data <- factor(factor_data,levels = c("East","West","North"))
print(new_order_data)
[1] East West East North North East West West West East North
Levels: East North West
[1] East West East North North East West West West East North
Levels: East West North

Generating Factor Levels

We can generate factor levels by using the gl() function. It takes two integers as input which indicates how many levels and how many times each level.

Syntax

gl(n, k, labels)
Following is the description of the parameters used -
n is a integer giving the number of levels.
k is a integer giving the number of replications.
labels is a vector of labels for the resulting factor levels.

Generating Factor Levels

Example
v <- gl(3, 4, labels = c("Tampa", "Seattle","Boston"))
print(v)
Output:
Tampa Tampa Tampa Tampa Seattle Seattle Seattle Seattle Boston
[10] Boston Boston Boston
Levels: Tampa Seattle Boston

Assessment 1

References

1. João Moreira, Andre Carvalho, Tomás Horvath - "A General Introduction to Data Analytics" - Wiley -2018
2.https://www.tutorialspoint.com/r/r vectors.htm
https://www.tutorialspoint.com/r/r factors.htm

Thank You

