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Introduction to Survival Data Analysis
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Overview

◼ What is survival analysis?

◼ Terminology and data structure

◼ Kaplan-Meier methods (non-parametric)

◼ Cox proportional hazards regression model (semi-parametric)

◼ Competing Risk
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What is Survival Analysis

◼ Time to Event: In many studies, the primary endpoint is the time from entering a study until 

a subject has a particular event occurs.

◼ Medical Research:

◼ Time to death

◼ Time to relapse of a disease

◼ Time re-hospitialization

◼ Engineering, business, etc:

◼ Engineer measures the time until failure of a product or component (mean time to failure, MTTF)

◼ Credit card company measures the length of time people keep using the credit card
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What is Survival Analysis

◼ Kind of survival studies

◼ Clinical trials

◼ Prospective cohort studies

◼ Retrospective cohort studies
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Randomized Clinical Trial (RCT)
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Randomized Clinical Trial (RCT)
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Cohort Study (Prospective/Retrospective)
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Time to Event: Example

◼ 10 patients with squamous cell carcinoma are recruited to receive specific treatment.

◼ The objective is to investigate the survival probability of the patients under this treatment.

◼ Event of interest: death

◼ They were followed up to 16 months.

◼ Duration of the study: 16 months

◼ Time scale: months

◼ Consider right censored observations.

96/24/2023 Data Analytics/M.Kanchana/CST/SNSCE



Time to Event: Example
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Time to Event: Example
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Censoring

◼ Data are typically subject to censoring when the event does not occur within the study 

observation time

◼ Survival data are characterized by incomplete observation: Censoring. 

T-test or ANOVA cannot be used because of the censored data.

◼ Most common is right censoring. Subject leaves the study before an event occurs.

◼ the study ends

◼ the individual withdrew from the study/lost to follow-up

◼ the individual died from other causes

◼ the individual is ineligible for research because of other reasons
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Time to Event

◼ Non-negative, T > 0

◼ To correctly collect a time to event, we need:

◼ An unambiguous time origin

◼ A time scale (day, month, year)

◼ Definition of the event of interest
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Example of Data Structure
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Survival Analysis

◼ Survival analysis is concerned with studying the time between entry to a study and a 

subsequent event.

◼ Also called “time to event analysis”

◼ Survival analysis attempts to answer questions such as:

◼ Which fraction of a population will survive past a certain time ?

◼ At what rate will they fail ?

◼ At what rate will they present the event ?

◼ How do particular factors benefit or affect the probability of survival ?
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Survival Analysis

◼ Objectives

◼ To estimate time to event for a group of individuals.

◼ To compare time to event between two or more groups.

◼ To assess the relationship between explanatory variables and time to event.
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Survival Analysis – advantages

◼ Why not compare mean time to event between groups using a t-test or linear regression?

◼ Ignores censoring

◼ Why not compare proportion of events in your groups using logistic regression?

◼ Ignores time

◼ Ignores censoring

Survival analysis accounts for censored observations as well as time to event.

176/24/2023 Data Analytics/M.Kanchana/CST/SNSCE



Survival Analysis – methods

◼ Non-parametric estimation

◼ Within-group survival: Kaplan-Meier

◼ Between-group comparison: Log-rank Test

◼ Semi-parametric estimation model

◼ Cox proportional hazard model (allows explanatory variables)

◼ Hazard: The event of interest. Usually it is believed to be harmful, e.g. death, relapse of a disease, re-

hospitalization, failure of the product or part, etc

◼ Parametric models: Exponential, Weibull distribution, etc.

(won’t cover today)
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Kaplan-Meier Survival Method

◼ Non-parametric estimate of survival 

probability

◼ Commonly used to describe survival-ship 

of a study population

◼ Intuitive graphical presentation

◼ Cumulative survival characteristics

◼ Estimation of median survival time

◼ Commonly used to compare two study 

population
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Kaplan-Meier Plot
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Survival Function:

Survival Probability at 

1-month = 1-1/10 = 0.9

3-month = (1-1/10)*(1-1/8)=0.788

4-month = (1-1/10)*(1-1/8)*(1-2/7) = 0.56

1-year survival rate = 28%

Median survival time= 6 months

The K-M curve takes a step down when there is an 

event. 

Kaplan-Meier Survival Probability
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Comparison of groups-Logrank Test

❖Logrank Test :

– For comparison of survival distributions between groups

– The groups are defined by categorical covariates. Can be more than 2 groups.

e.g.   Therapy : treatment, placebo

Gender : male, female

Age group : ≤40, ≥40

❖Bad performance when two survival curves are crossing.

– The logrank test has better performance under the assumption of proportional hazards.

Proportional hazards: The hazard functions for any two individuals at any point in time are 

proportional, and does not change with time t.
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Comparison of post-transplant death 

and graft failure probability in IPF 

patients with lung transplantation

Comparison group: 

single transplantation

vs.

double transplantation

Logrank test:

p-value < 0.001

Logrank Test-Example

Single- vs Double-Lung Transplantation in Patients With Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis Since the Implementation 

of Lung Allocation Based on Medical Need 

JAMA. 2015;313(9):936-948. doi:10.1001/jama.2015.1175
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Log-rank Test- Another example

Effect of Losmapimod on Cardiovascular Outcomes in Patients With Acute MI JAMA. 2016;315(15):1591-71599

Comparison of composite of 

cardiovascular death, MI, or 

severe recurrent ischemia in 

patients with acute MI: 

Comparison group: 

Losmapimod vs. Placebo

Logrank test:

p-value =0.24
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Cox Regression Survival Model

❖Allows for prognostic factors.

❖Explore the relationship between survival and explanatory variables.

❖Models and compares the hazards for different groups/factors (explanatory variables).

❖ Important assumption:

– Survival curves with proportional hazards

(risk of an event at different time points).
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❖ h(t,X) = h0exp(βX) 

= h0(t)exp(β1X1+β2X2+ ∙∙∙ +βnXn)

❖Hazard ratio:

Cox Regression Survival Model

)exp(
)(

)(

0

1 =
th

th • Constant, does not depend on time

• Proportional hazard over time

exp(β): indicates how large (small) is the hazard in one group 

with respect to the hazard in the reference group
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❖HIV-patients receiving 2 types of treatment.

❖The objective is to investigate the survival probability of the patients, by gender 

and by treatment.

– Event of interest: death

– Covariates: gender (male, female), treatment (new, standard)

❖They are followed up to 6 years

– Duration of the study: 6 years (72 months)

– Time scale: months

❖Consider right censored observations

Cox Regression Survival Model – Example
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Cox-Regression model: exploring covariates

✓ Curves do not cross each other

✓ Proportional hazards…
Good candidates for

covariates
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❖ h(t,X) = h0exp(βX) 

= h0(t)exp(β1gender+β2Treatment)

❖Reference group: Female, StandardTreatment

❖Fitted model:

h(t, X) = h0(t)exp(–0.51*Male + 0.69*NewTreatment)

exp(–0.51) = 0.6 exp(0.69)=2.0

Cox-Regression model: exploring covariates

Males have larger probabilities 

of survival than females

Patients receiving new treatment having lower survival 

probabilities than patients with standard treatment
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Cox-Regression: Example 

Figure 3 (truncated) - JAMA. 2016;315(15):1591-71599
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“Competing risks are said to be present when a patient is at risk 

of more than one mutually exclusive event, such as death from 

different causes, and the occurrence of one of these will prevent 

any other event from ever happening.”

Gichangi & Vach (2005)

Competing Risks

316/24/2023 Data Analytics/M.Kanchana/CST/SNSCE



Examples:

• Event of interest: Death.

• Cause of death was categorized into the following:

– Breast cancer

– Heart disease (CVD)

– Other causes

Competing Risks
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Competing Risks – Example
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Competing Risks – Example
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Competing Risks – Data format

Patient 

ID

T 

(treatment)

Y1 (Cancer 

death)

Y2 (CVD 

death)

Time (years)

1 B No No 10

2 A No Yes 4

3 A Yes No 2

Data
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Competing Risks – Data format

PI

D

T Y1 Y2 Time

1 1 0 0 10

2 0 0 1 4

3 0 1 0 2

Old method

36

For outcome (Y1, Y2): 0 = censored, 1 = event

6/24/2023 Data Analytics/M.Kanchana/CST/SNSCE



Competing Risks – Data format

PI

D

T Y Tim

e

1 1 0 10

2 0 2 4

3 0 1 2

Competing Risk method

37

For outcome (Y):

0 = censored

1 = event 1 (death from cancer, our primary event)

2 = event 2 (death from CVD, competing event)
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• Cumulative incidence function (CIF)

– The cumulative incidence function gives the proportion of patients at time t who have died from cause k

accounting for the fact that patients can die from other causes.

• Cause-specific hazard (won’t cover today)

– The cause-specific hazard, hk (t), is the instantaneous risk of dying from a particular cause k given that the 

subject is still alive at time t. 

• Subdistribution hazard (won’t cover today)

– The subdistribution hazard, hks (t), is the instantaneous risk of dying from a particular cause k given that 

the subject has not died from cause k. 

Competing Risks – Key Concepts
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The cumulative incidence function gives the proportion of patients at time t who have died from 

cause k accounting for the fact that patients can die from other causes.

Define: 

• St = Number at risk at the end of period t

• Et = Number of primary events in period t

• At = Number of competing events in period t

Cumulative Incidence Function (CIF)

ttt

t
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E
tEtEP

++
= )|(
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Cumulative Incidence Function (CIF)

St = Number at risk at the end of period t

Et = Number of primary events in period t

At = Number of competing events in period t

Note:

→ Kaplan-Meier estimator does NOT work !

Competing Risks
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Cumulative Incidence Function (CIF)

Define the survival function as before (using Kaplan-Meier)

Competing risk method Old method

Define the CIF (of the primary events) as

Competing risk method Old method

Competing Risks
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CIF compared to Kaplan-Meier

መ𝐶 𝑡 > መ𝐶𝐸 𝑡

So, Kaplan-Meier (old method) over-

estimates the hazard rate

Competing Risks
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• We won’t cover more statistical analysis models in the competing risks today, such as Cause-

specific hazard model and Subdistribution hazard model.

• Keep in mind: When your study subjects are at risk of more than one mutually exclusive event 

such as death from different causes, Kaplan-Meier estimator may NOT be appropriate. 

Competing risk methods may be considered.

• Come to BCC for consulting !

Competing Risks
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Summary

• A common circumstance in working with survival data is that not all the individuals in a sample are 

observed until their respective times of “failure”. The incomplete observation of a times to “failure” is 

known as censoring;

• Kaplan-Meier method is a nonparametric technique that uses the exact survival time for each 

individual in a sample instead of group the times into intervals

• A nonparametric technique known as the logrank test is used to determine whether survival differs 

systematically between the groups.

• Cox proportional hazard regression model is a semi-parametric method to study the effect of different 

covariates on a time-to-event endpoint after adjusting for each other.

• Competing risks occur when a patient is at risk of more than one mutually exclusive event such as 

death from different causes. Kaplan-Meier estimator may NOT be appropriate. Competing risk 

methods may be considered.
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