SNS COLLEGE OF ENGINEERING - COIMBATORE-641107
 DEPARTMENT OF SCIENCE AND HUMANITIES
 QUESTION BANK (IAE-3)
 19MA207-STATISTICS AND NUMERICAL METHODS
 UNIT-IV

Part-A

1. State Lagrange's interpolation formula.
2. Give the inverse of Lagrange's interpolation formula.
3. Find the parabola of the form $y=a x^{2}+b x+c$ passing through the points $(0,0)$, $(1,1) \&(2,20)$.
4. State the formula to find the first and second order derivative using the forward differences.
5. Write down the expressions for $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=x_{n}$ by Newton's backward difference formula.
6. Find $\frac{d y}{d x}$ at $\mathrm{x}=1$ from the following table.

$\mathrm{x}:$	1	2	3	4
$\mathrm{y}:$	1	8	27	64

7. Evaluate $\int_{1 / 2}^{1} \frac{1}{x} d x$ by trapezoidal rule dividing the range into 4 equal parts.
8. Using Trapezoidal rule, evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ with $\mathrm{h}=0.2$. Hence obtain an approximate Value of π.
9. Write down the Simpson's $1 / 3$-Rule in numerical integration.
10. What are the errors in Trapezoidal and Simpson's rules of numerical integration?

Part-B

1. Using Lagrange's interpolation formula find the value of $f(3)$, from the following table

$x:$	0	1	2	5
$f(x):$	2	3	12	147

2. Using Lagrange's interpolation formula, find $y(10)$ from the following table

$\mathrm{x}:$	5	6	9	11
$\mathrm{y}:$	12	13	14	16

3. Using Lagrange's interpolation formula, find $y(10)$ from the following table

$\mathrm{x}:$	0	1	3	4	5
$\mathrm{y}:$	0	1	81	256	625

4. Use Lagrange's method to find $\log _{10} 656$, given that $\log _{10} 654=2.8156, \log _{10} 658=2.8182$, $\log _{10} 659=2.8189, \log _{10} 661=2.8202$.
5. From the data given below, find the number of students whose weight is between $0-40$ and $80-$ 100.

Weight in Ibs	$0-40$	$40-60$	$60-80$	$80-100$	$100-120$
No. of students	250	120	100	70	50

6. Find $y(22)$ using Newtons formula, given that

X:	20	25	30	35	40	45

Y(x): $\begin{array}{lllllll}354 & 332 & 291 & 260 & 231 & 204\end{array}$
7. Using Newton's forward interpolation formula, find the polynomial $f(x)$ satisfying the following data. Hence evaluate $\boldsymbol{f}(\boldsymbol{x})$ at \boldsymbol{x} (5)

$\boldsymbol{x}:$	4	6	8	10
$\boldsymbol{f}(\boldsymbol{x}):$	1	3	8	16

8. Find $\boldsymbol{y}(\mathbf{1 9 7 6})$ from the following
$\boldsymbol{x}: 1941 \quad 1951 \quad 1961$
$\boldsymbol{y}: 20 \quad 24 \quad 29$
19711981
46
1991
51
9. Given the following data, find $y^{\prime}(6)$ and the maximum value of y.

$\mathrm{x}:$	0	2	3	4	7	9
$\mathrm{f}(\mathrm{x})$	4	26	58	112	466	922

10. For the first, second and third derivatives of $f(x)$ at $x=1.5$ if

$\mathrm{x}:$	1.5	2	2.5	3	3.5	4
$\mathrm{f}(\mathrm{x}):$	3.375	7	13.625	24	38.875	59

11. Compute $f^{\prime}(0), f^{\prime}(0), f^{\prime}$ '(4) from the following table,

$\mathrm{x}:$	0	1	2	3	4
$\mathrm{f}(\mathrm{x}):$	1	2.718	7.381	20.086	54.598

12. Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by (i) Trapezoidal rule (ii) Simpson's rule. Aso check up the results by actual integration. (16)
13. By dividing the range into ten equal parts, evaluate $\int_{0}^{\pi} \sin x d x$ by trapezoidal \& Simpson's rule. Verify your answer with actual integration. (16)
14. Evaluate $\int_{0}^{\pi / 2} \sin x d x$ by using (i) Trapezoidal rule (ii) Simpson"s rule taking 11 ordinates

UNIT-V

PART-A

1. State Taylor series algorithm for the first order differential equations.
2. Using Taylor's series find $y(0.1)$ for $\frac{d y}{d x}=1-y, y(0)=0$.
3. By using Taylor's series method, find $\mathrm{y}(1.1)$ for $\mathrm{y}^{\prime}=x+y, y(1)=0$.
4. State Euler algorithm to solve $\mathrm{y}^{\prime}=\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$.
5. State modified Euler algorithm to solve $y^{\prime}=f(x, y), y\left(x_{0}\right)=y 0$.
6. Write down the R-K formula of fourth order to solve $\frac{d y}{d x}=f(x, y)$, with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{0}$
7. How many prior values are required to predict the next value in Milne's method.
8. Write down Milne's predictor-corrector formula for solving initial value problem in first order differential equation.

PART-B

1. Given $\frac{d y}{d x}=1+y^{2}$, where $\mathrm{y}=0$ when $\mathrm{x}=0$, find $\mathrm{y}(0.2), \mathrm{y}(0.4)$ and $\mathrm{y}(0.6)$, using Taylor series method.
2. Using Taylor's series method find y at $\mathrm{x}=0.1$ if $\frac{d y}{d x}=x^{2} y-1, y(0)=1$
3. By Taylor series method, find y (0.1), y (0.2) if $\frac{d y}{d x}=x+y, y(0)=1$.
4. Using Euler's method find $\mathrm{y}(0.2)$ and $\mathrm{y}(0.4)$ from $\frac{d y}{d x}=x+y, y(0)=1$ with $\mathrm{h}=0.2$
5. Use Euler method, with $\mathrm{h}=0.1$ to find the solution of $\mathrm{y}^{\prime}=x^{2}+y^{2}$ with $\mathrm{y}(0)=0$ in $0 \leq \mathrm{x} \leq 5$
6. Using Modified Euler method, find $\mathrm{y}(0.2), \mathrm{y}(0.1)$ given $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$
7. By Modified Euler method, find $\mathrm{y}(0.1), \mathrm{y}(0.2)$ and $\mathrm{y}(0.3)$ if $\frac{d y}{d x}=x+y, y(0)=1$
8. Using R.K method of fourth order find $y(0.1)$ and $y(0.2)$ for the initial value problem $\frac{d y}{d x}=x+y^{2}, y(0)=1$.
9. If $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$, find $y(0.2), y(0.4)$ and $y(0.6)$ by Runge - Kutta method of fourth order
10. Using R.K method of fourth order find $y(0.2)$ and $y(0.4)$ and $y(0.6)$ for the initial value problem $\frac{d y}{d x}=y-\mathrm{x}^{2}, \mathrm{y}(0)=1$
11. Given $\frac{d y}{d x}=\frac{1}{2}\left(\left(1+x^{2}\right) y^{2}\right.$ and $\mathrm{y}(0)=1, \mathrm{y}(0.1)=1.06, \mathrm{y}(0.2)=1.12, \mathrm{y}(0.3)=1.21$ evaluate $\mathrm{y}(0.4)$ by Milnes's predictor- cSorrector method.
12. Given and $\frac{d y}{d x}=y-x^{2} y(0)=1, y(0.2)=1.12186, y(0.4)=1.46820, y(0.6)=1.7379$ evaluate $\mathrm{y}(0.8)$ by Milnes's predictor- corrector method.
13. Given $\frac{d y}{d x}=2 e^{x}-y$ and $\mathrm{y}(0)=2, \mathrm{y}(0.1)=2.010, \mathrm{y}(0.2)=2.040, \mathrm{y}(0.3)=2.090$ evaluate $\mathrm{y}(0.4)$ and $y(0.5)$ by Milnes's predictor- corrector method.
