
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of CSE(IOT AND
CYBERSECURITY INCLUDING BCT)

19CS206 OBJECT ORIENTED PROGRAMMING

I YEAR /II SEMESTER

Unit 2- BASICS FEATURES OF JAVA

Topic 1: Control structures including selection

Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE 1/24

2/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Java compiler executes the code from top to bottom.

The statements in the code are executed according to the order in which they

appear.

However,it provides statements that can be used to control the flow of Java code.

Such statements are called control flow statements.

It is one of the fundamental features of Java, which provides a smooth flow of

program.

Java provides three types of control flow statements.

Control structures including selection

3/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

1.Decision Making statements

o if statements

o switch statement

2.Loop statements

o do while loop

o while loop

o for loop

o for-each loop

3.Jump statements

o break statement

o continue statement

4/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Decision-Making statements

 As the name suggests, decision-making statements decide which statement to

execute and when.

 Decision-making statements evaluate the Boolean expression and control the

program flow depending upon the result of the condition provided.

 There are two types of decision-making statements in Java, i.e., If statement

and switch statement.

5/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

If Statement:

 In Java, the "if" statement is used to evaluate a condition.

 The control of the program is diverted depending upon the specific condition.

 The condition of the If statement gives a Boolean value, either true or false. In Java,

there are four types of if-statements given below.

1.Simple if statement

2.if-else statement

3.if-else-if ladder

4.Nested if-statement

6/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Simple if statement:

 It is the most basic statement among all control flow statements in Java.

 It evaluates a Boolean expression and enables the program to enter a block of

code if the expression evaluates to true.

Syntax

if(condition)

{

statement 1; //executes when condition is true

}

7/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

PROGRAM

public class Student {

public static void main(String[] args) {

int x = 10;

int y = 12;

if(x+y > 20)

{

System.out.println("x + y is greater than 20");

}

}

}

8/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

if-else statement

 The if-else statement is an extension to the if-statement, which uses another block of code,

i.e., else block.

 The else block is executed if the condition of the if-block is evaluated as false.

Syntax:

if(condition)

{

statement 1; //executes when condition is true

}

Else

{

statement 2; //executes when condition is false

}

https://www.javatpoint.com/java-if-else

9/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

public class Student

{

public static void main(String[] args)

{

int x = 10;

int y = 12;

if(x+y < 10)

{

System.out.println("x + y is less than 10");

}

Else

{

System.out.println("x + y is greater than 20");

}

} }

10/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

if-else-if ladder:

 The if-else-if statement contains the if-statement followed by multiple else-if statements.

 In other words, we can say that it is the chain of if-else statements that create a decision tree

where the program may enter in the block of code where the condition is true.

 We can also define an else statement at the end of the chain.

Syntax of if-else-if statement is given below.

if(condition 1) {

statement 1;

}

else if(condition 2) {

statement 2;

}

else { statement 3;

}

11/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

public class Student

{

public static void main(String[] args)

{

String city = "Delhi";

if(city == "Meerut")

{

System.out.println("city is meerut");

}

else if (city == "Noida")

{

System.out.println("city is noida");

}

12/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

else if(city == "Agra")

{

System.out.println("city is agra");

}

else

{

System.out.println(city);

}

}

}

13/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Nested if-statement

In nested if-statements, the if statement can contain a if or if-else statement inside another if or else-if

statement.

Syntax of Nested if-statement is given below.

if(condition 1)

{

statement 1; //executes when condition 1 is true

if(condition 2)

{

statement 2; //executes when condition 2 is true

}

Else

{

statement 2; //executes when condition 2 is false

}

}

14/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Program

public class Student

{

public static void main(String[] args)

{

String address = "Delhi, India";

if(address.endsWith("India"))

{

if(address.contains("Meerut"))

{

System.out.println("Your city is Meerut");

}else if(address.contains("Noida"))

{

System.out.println("Your city is Noida");

15/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

}

else

{

System.out.println(address.split(",")[0]);

}

}

Else

{

System.out.println("You are not living in India");

}

}

}

16/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Switch Statement:

In Java, Switch statements are similar to if-else-if statements.

The switch statement contains multiple blocks of code called cases and a single case is

executed based on the variable which is being switched.

The switch statement is easier to use instead of if-else-if statements. It also enhances the

readability of the program.

Points to be noted about switch statement:

 The case variables can be int, short, byte, char, or enumeration. String type is also

supported since version 7 of Java

 Cases cannot be duplicate

 Default statement is executed when any of the case doesn't match the value of

expression. It is optional.

https://www.javatpoint.com/java-switch

17/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

o Break statement terminates the switch block when the condition is satisfied.

It is optional, if not used, next case is executed.

o While using switch statements, we must notice that the case expression will be of the same type

as the variable. However, it will also be a constant value.

18/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

The syntax to use the switch statement is given below.

switch (expression)

{

case value1:

statement1;

break;

case valueN:

statementN;

break;

default:

default statement;

}

19/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Student.java

public class Student implements Cloneable {

public static void main(String[] args) {

int num = 2;

switch (num){

case 0:

System.out.println("number is 0");

break;

case 1:

System.out.println("number is 1");

break;

default:

System.out.println(num);

} } }

20/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Loop Statements

 In programming, sometimes we need to execute the block of code repeatedly while

some condition evaluates to true.

 However, loop statements are used to execute the set of instructions in a repeated

order. The execution of the set of instructions depends upon a particular condition.

 In Java, we have three types of loops that execute similarly. However, there are

differences in their syntax and condition checking time.

1. for loop
2. while loop
3. do-while loop

21/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

for(initialization, condition, increment/decrement)

{

//block of statements

}

The flow chart for the for-loop is given below.

22/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Program

public class Calculattion

{

public static void main(String[] args)

{

int sum = 0;

for(int j = 1; j<=10; j++)

{

sum = sum + j;

}

System.out.println("The sum of first 10 natural numbers is " + sum);

}

}

23/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Java for-each loop

 Java provides an enhanced for loop to traverse the data structures like array or collection.

 In the for-each loop, we don't need to update the loop variable.

 The syntax to use the for-each loop in java is given below.

for(data_type var : array_name/collection_name)

{

//statements

}

24/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Program

public class Calculation

{

public static void main(String[] args)

{

String[] names = {"Java","C","C++","Python","JavaScript"};

System.out.println("Printing the content of the array names:\n");

for(String name:names)

{

System.out.println(name);

}

}

}

25/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

while loop

 The while loop is also used to iterate over the number of statements multiple times.

 However, if we don't know the number of iterations in advance, it is recommended to use a

while loop.

 Unlike for loop, the initialization and increment/decrement doesn't take place inside the loop

statement in while loop.

 It is also known as the entry-controlled loop since the condition is checked at the start of the

loop.

 If the condition is true, then the loop body will be executed; otherwise, the statements after

the loop will be executed.

https://www.javatpoint.com/java-while-loop

26/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

The syntax of the while loop is given below.

while(condition)

{

//looping statements

}

The flow chart for the while loop is given in the following image.

27/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Program

public class Calculation

{

public static void main(String[] args)

{

// TODO Auto-generated method stub

int i = 0;

System.out.println("Printing the list of first 10 even numbers \n");

while(i<=10)

{

System.out.println(i);

i = i + 2;

} } }

28/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

do-while loop

 The do-while loop checks the condition at the end of the loop after executing the loop

statements.

 When the number of iteration is not known and we have to execute the loop at least once,

we can use do-while loop.

 It is also known as the exit-controlled loop since the condition is not checked in advance.

The syntax of the do-while loop is given below.

do
{
//statements
} while (condition);

https://www.javatpoint.com/java-do-while-loop

29/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Program

public class Calculation

{

public static void main(String[] args)

{

int i = 0;

System.out.println("Printing the list of first 10 even numbers \n");

do {

System.out.println(i);

i = i + 2;

}while(i<=10);

}

}

30/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Jump Statements

 Jump statements are used to transfer the control of the program to the specific statements.

 In other words, jump statements transfer the execution control to the other part of the

program.

 There are two types of jump statements in Java, i.e., break and continue.

Java break statement

 As the name suggests, the break statement is used to break the current flow of the program.

Transfer the control to the next statement outside a loop or switch statement.

 However, it breaks only the inner loop in the case of the nested loop.

https://www.javatpoint.com/java-break

31/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Program

public class BreakExample

{

public static void main(String[] args)

{

// TODO Auto-generated method stub

for(int i = 0; i<= 10; i++)

{

System.out.println(i);

if(i==6)

{

break;

} } } }

32/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

Java continue statement

Unlike break statement, the continue statement doesn't break the loop, whereas, it skips the specific

part of the loop and jumps to the next iteration of the loop immediately.

Consider the following example to understand the functioning of the continue statement in Java.

public class ContinueExample
{
public static void main(String[] args)

{
for(int i = 0; i<= 2; i++)
{
for (int j = i; j<=5; j++)

{
if(j == 4)

{
continue;
}
System.out.println(j);
} } } }

https://www.javatpoint.com/java-continue

33/12Control structures including selection/ R.Kamalakkannan / CSE-IOT /SNSCE

THANK YOU

