
Page Replacement

• Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement

• Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

• Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical
memory

CS6401 / Unit 3 / Page Replacement 1 / 18



Need For Page
Replacement

CS6401 / Unit 3 / Page Replacement 2 / 18



Basic Page Replacement
1. Find the location of the desired page on disk
2. Find a free frame:

- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

- Write victim frame to disk if dirty
3. Bring the desired page into the (newly) free frame;

update the page and frame tables
4. Continue the process by restarting the instruction that

caused the trap
Note now potentially 2 page transfers for page fault –

increasing EAT
CS6401 / Unit 3 / Page Replacement 3 / 18



Page Replacement

CS6401 / Unit 3 / Page Replacement 4 / 18



Page and Frame
Replacement Algorithms

• Frame-allocation algorithm determines
– How many frames to give each process
– Which frames to replace

• Page-replacement algorithm
– Want lowest page-fault rate on both first access and re-access

• Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page faults
on that string
– String is just page numbers, not full addresses
– Repeated access to the same page does not cause a page fault
– Results depend on number of frames available

• In all our examples, the reference string of referenced page numbers is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

CS6401 / Unit 3 / Page Replacement 5 / 18



Graph of Page Faults Versus
The Number of Frames

CS6401 / Unit 3 / Page Replacement 6 / 18



First-In-First-Out (FIFO) Algorithm

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

15 page faults

•Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
– Adding more frames can cause more page faults!

• Belady’ s Anomaly
•How to track ages of pages?

– Just use a FIFO queue

CS6401 / Unit 3 / Page Replacement 7 / 18



FIFO Illustrating Belady’ s Anomaly

CS6401 / Unit 3 / Page Replacement 8 / 18



Optimal Algorithm
• Replace page that will not be used for longest period of time

– 9 is optimal for the example
• How do you know this?

– Can’ t read the future
• Used for measuring how well your algorithm performs

CS6401 / Unit 3 / Page Replacement 9 / 18



Least Recently Used
(LRU) Algorithm

• Use past knowledge rather than future
• Replace page that has not been used in the most amount of time
• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT
• Generally good algorithm and frequently used
• But how to implement?

CS6401 / Unit 3 / Page Replacement 10 / 18



LRU Algorithm (Cont.)
• Counter implementation

– Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter

– When a page needs to be changed, look at the counters to find smallest
value

• Search through table needed
• Stack implementation

– Keep a stack of page numbers in a double link form:
– Page referenced:

• move it to the top
• requires 6 pointers to be changed

– But each update more expensive
– No search for replacement

• LRU and OPT are cases of stack algorithms that don’ t have Belady’ s Anomaly

CS6401 / Unit 3 / Page Replacement 11 / 18



Use Of A Stack to Record Most Recent
Page References

CS6401 / Unit 3 / Page Replacement 12 / 18



LRU Approximation Algorithms

• LRU needs special hardware and still slow
• Reference bit

– With each page associate a bit, initially = 0
– When page is referenced bit set to 1
– Replace any with reference bit = 0 (if one exists)

• We do not know the order, however
• Second-chance algorithm

– Generally FIFO, plus hardware-provided reference bit
– Clock replacement
– If page to be replaced has

• Reference bit = 0 -> replace it
• reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

CS6401 / Unit 3 / Page Replacement 13 / 18



Second-Chance (clock) Page-
Replacement Algorithm

CS6401 / Unit 3 / Page Replacement 14 / 18



Enhanced Second-Chance
Algorithm

• Improve algorithm by using reference bit and modify bit (if available) in
concert

• Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified – best page to replace
2. (0, 1) not recently used but modified – not quite as good, must write

out before replacement
3. (1, 0) recently used but clean – probably will be used again soon
4. (1, 1) recently used and modified – probably will be used again soon

and need to write out before replacement
• When page replacement called for, use the clock scheme but use the

four classes replace page in lowest non-empty class
– Might need to search circular queue several times

CS6401 / Unit 3 / Page Replacement 15 / 18



Counting Algorithms

• Keep a counter of the number of references that
have been made to each page

– Not common

• Lease Frequently Used (LFU) Algorithm:
replaces page with smallest count

• Most Frequently Used (MFU) Algorithm: based on
the argument that the page with the smallest count
was probably just brought in and has yet to be used

CS6401 / Unit 3 / Page Replacement 16 / 18



Page-Buffering Algorithms

• Keep a pool of free frames, always
– Then frame available when needed, not found at fault time
– Read page into free frame and select victim to evict and add to

free pool
– When convenient, evict victim

• Possibly, keep list of modified pages
– When backing store otherwise idle, write pages there and set to

non-dirty
• Possibly, keep free frame contents intact and note what is in

them
– If referenced again before reused, no need to load contents again

from disk
– Generally useful to reduce penalty if wrong victim frame selected

CS6401 / Unit 3 / Page Replacement 17 / 18



Applications and Page Replacement

• All of these algorithms have OS guessing about future
page access

• Some applications have better knowledge – i.e.
databases

• Memory intensive applications can cause double
buffering
– OS keeps copy of page in memory as I/O buffer
– Application keeps page in memory for its own work

• Operating system can given direct access to the disk,
getting out of the way of the applications
– Raw disk mode

• Bypasses buffering, locking, etc

CS6401 / Unit 3 / Page Replacement 18 / 18


