
Allocation of Frames

• Each process needs minimum number of frames
• Example: IBM 370 – 6 pages to handle SS MOVE

instruction:
– instruction is 6 bytes, might span 2 pages
– 2 pages to handle from
– 2 pages to handle to

• Maximum of course is total frames in the system
• Two major allocation schemes

– fixed allocation
– priority allocation

• Many variations

CS6401 / Unit 3 / Allocation of frames, Thrashing 1 / 18

Fixed Allocation
• Equal allocation – For example, if there are 100 frames (after

allocating frames for the OS) and 5 processes, give each process 20
frames
– Keep some as free frame buffer pool

• Proportional allocation – Allocate according to the size of process
– Dynamic as degree of multiprogramming,process sizes change

si size of process pi

S si

m total number of frames

a allocation for p si m
Si i 62 57

137
 127

 62 4
137
10

s 2 127

a1

m 62
s1 10

2a

CS6401 / Unit 3 / Allocation of frames, Thrashing 2 / 18

Priority Allocation

• Use a proportional allocation scheme using
priorities rather than size

• If process Pi generates a page fault,
– select for replacement one of its frames
– select for replacement a frame from a process with

lower priority number

CS6401 / Unit 3 / Allocation of frames, Thrashing 3 / 18

Global vs. Local Allocation

• Global replacement – process selects a replacement
frame from the set of all frames; one process can take
a frame from another
– But then process execution time can vary greatly
– But greater throughput so more common

• Local replacement – each process selects from only its
own set of allocated frames
– More consistent per-process performance
– But possibly underutilized memory

CS6401 / Unit 3 / Allocation of frames, Thrashing 4 / 18

Non-Uniform Memory Access
• Many systems are NUMA – speed of access to

memory varies
– Consider system boards containing CPUs and

memory, interconnected over a system bus
• Optimal performance comes from allocating memory
“ close to” the CPU on which the thread is scheduled

– And modifying the scheduler to schedule the thread
on the same system board when possible

– Solved by Solaris by creating lgroups
• Structure to track CPU / Memory low latency groups
• Used my schedule and pager
• When possible schedule all threads of a process and

allocate all memory for that process within the lgroup

CS6401 / Unit 3 / Allocation of frames, Thrashing 5 / 18

Thrashing
• If a process does not have “ enough” pages, the page-fault rate is

very high
– Page fault to get page
– Replace existing frame
– But quickly need replaced frame back
– This leads to:

• Low CPU utilization
• Operating system thinking that it needs to increase the

degree of multiprogramming
• Another process added to the system

• Thrashing a process is busy swapping pages in and out

CS6401 / Unit 3 / Allocation of frames, Thrashing 6 / 18

Thrashing (Cont.)

CS6401 / Unit 3 / Allocation of frames, Thrashing 7 / 18

Demand Paging and
Thrashing

• Why does demand paging work?
Locality model

– Process migrates from one locality to another
– Localities may overlap

• Why does thrashing occur?
 size of locality > total memory size

– Limit effects by using local or priority page
replacement

CS6401 / Unit 3 / Allocation of frames, Thrashing 8 / 18

Working-Set Model
• working-set window a fixed number of page references

Example: 10,000 instructions
• WSSi (working set of Process Pi) =

total number of pages referenced in the most recent (varies in
time)
– if too small will not encompass entire locality
– if too large will encompass several localities
– if = will encompass entire program

• D = WSSi total demand frames
– Approximation of locality

• if D > m Thrashing
• Policy if D > m, then suspend or swap out one of the processes

CS6401 / Unit 3 / Allocation of frames, Thrashing 9 / 18

Working-Set Model

CS6401 / Unit 3 / Allocation of frames, Thrashing 10 / 18

Page-Fault Frequency
• More direct approach than WSS
• Establish “ acceptable” page-fault frequency (PFF) rate and

use local replacement policy
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

2/22/2017 CS6401 / Unit 3 / Allocation of frames, Thrashing 11 / 18

Working Sets and Page Fault Rate

• Direct relationship between working set of a process
and its page-fault rate

• Working set changes over time
• Peaks and valleys over time

CS6401 / Unit 3 / Allocation of frames, Thrashing 12 / 18

Memory-Mapped Files

• Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

• A file is initially read using demand paging
– A page-sized portion of the file is read from the file system into

a physical page
– Subsequent reads/writes to/from the file are treated as

ordinary memory accesses
• Simplifies and speeds file access by driving file I/O through

memory rather than read() and write() system calls
• Also allows several processes to map the same file allowing the

pages in memory to be shared
• But when does written data make it to disk?

– Periodically and / or at file close() time
– For example, when the pager scans for dirty pages

CS6401 / Unit 3 / Allocation of frames, Thrashing 13 / 18

Memory-Mapped File Technique
for all I/O

• Some OSes uses memory mapped files for standard I/O
• Process can explicitly request memory mapping a file via mmap()

system call
– Now file mapped into process address space

• For standard I/O (open(),read(),write(),close()), mmap
anyway
– But map file into kernel address space
– Process still does read() and write()

• Copies data to and from kernel space and user space
– Uses efficient memory management subsystem

• Avoids needing separate subsystem
• COW can be used for read/write non-shared pages
• Memory mapped files can be used for shared memory (although

again via separate system calls)

CS6401 / Unit 3 / Allocation of frames, Thrashing 14 / 18

Memory Mapped Files

CS6401 / Unit 3 / Allocation of frames, Thrashing 15 / 18

Shared Memory via Memory
Mapped I/O

2/22/2017 CS6401 / Unit 3 / Allocation of frames, Thrashing 16 / 18

Shared Memory in Windows API

• First create a file mapping for file to be mapped
– Then establish a view of the mapped file in process’s

virtual address space
• Consider producer / consumer

– Producer create shared-memory object using
memory mapping features

– Open file via CreateFile(), HANDLE
– Create mapping via returning a
– CreateFileMapping()

creating a named shared-memory object
– Create view via MapViewOfFile()

CS6401 / Unit 3 / Allocation of frames, Thrashing 17 / 18

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit
• Example: = 10,000

– Timer interrupts after every 5000 time units
– Keep in memory 2 bits for each page
– Whenever a timer interrupts copy and sets the values

of all reference bits to 0
– If one of the bits in memory = 1 page in working

set
• Why is this not completely accurate?
• Improvement = 10 bits and interrupt every 1000

time units

CS6401 / Unit 3 / Allocation of frames, Thrashing 18 / 18

