
Segmentation

• Memory-management scheme that supports user view of
memory

• A program is a collection of segments
– A segment is a logical unit such as:

main program procedure function method object local
variables, global variables common block stack symbol table
arrays

CS6401 / Unit 3 / Segmentation , Paging 1 / 22

User’ s View of a Program

CS6401 / Unit 3 / Segmentation , Paging 2 / 22

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

CS6401 / Unit 3 / Segmentation , Paging 3 / 22

Segmentation Architecture
• Logical address consists of a two tuple:
<segment-number, offset>,
• Segment table – maps two-dimensional physical addresses;

each table entry has:
– base – contains the starting physical address where the

segments reside in memory
– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment
table’ s location in memory

• Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR
CS6401 / Unit 3 / Segmentation , Paging 4 / 22

SegmentationArchitecture
(Cont.)

• Protection
– With each entry in segment table associate:

• validation bit = 0 illegal segment
• read/write/execute privileges

• Protection bits associated with segments; code sharing
occurs at segment level

• Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

CS6401 / Unit 3 / Segmentation , Paging 5 / 22

Segmentation Hardware

CS6401 / Unit 3 / Segmentation , Paging 6 / 22

Paging
• Physical address space of a process can be noncontiguous; process is

allocated physical memory whenever the latter is available
– Avoids external fragmentation
– Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames
– Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages
• Keep track of all free frames
• To run a program of size N pages, need to find N free frames and

load program
• Set up a page table to translate logical to physical addresses
• Backing store likewise split into pages
• Still have Internal fragmentation

CS6401 / Unit 3 / Segmentation , Paging 7 / 22

Address Translation Scheme
• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table which
contains base address of each page in physical memory

– Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

m -n n

– For given logical address space 2m and page size 2n

CS6401 / Unit 3 / Segmentation , Paging 8 / 22

page number page offset
p d

Paging Hardware

CS6401 / Unit 3 / Segmentation , Paging 9 / 22

Paging Model of Logical
and Physical Memory

CS6401 / Unit 3 / Segmentation , Paging 10 / 22

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

CS6401 / Unit 3 / Segmentation , Paging 11 / 22

Paging (Cont.)
• Calculating internal fragmentation

– Page size = 2,048 bytes
– Process size = 72,766 bytes
– 35 pages + 1,086 bytes
– Internal fragmentation of 2,048 - 1,086 = 962 bytes
– Worst case fragmentation = 1 frame – 1 byte
– On average fragmentation = 1 / 2 frame size
– So small frame sizes desirable?
– But each page table entry takes memory to track
– Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB
• Process view and physical memory now very different
• By implementation process can only access its own memory

CS6401 / Unit 3 / Segmentation , Paging 12 / 22

Free Frames

Before allocation After allocation

CS6401 / Unit 3 / Segmentation , Paging 13 / 22

Implementation of Page Table
• Page table is kept in main memory
• Page-table base register (PTBR) points to the page table
• Page-table length register (PTLR) indicates size of the page

table
• In this scheme every data/instruction access requires two

memory accesses
– One for the page table and one for the data / instruction
• The two memory access problem can be solved by the use of

a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

CS6401 / Unit 3 / Segmentation , Paging 14 / 22

Implementation of Page
Table (Cont.)

• Some TLBs store address-space identifiers (ASIDs) in each
TLB entry – uniquely identifies each process to provide
address- space protection for that process
– Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)
• On a TLB miss, value is loaded into the TLB for faster

access next time
– Replacement policies must be considered
– Some entries can be wired down for permanent fast

access
CS6401 / Unit 3 / Segmentation , Paging 15 / 22

Associative Memory
• Associative memory – parallel search

• Address translation (p, d)
– If p is in associative register, get frame # out
– Otherwise get frame # from page table in memory

CS6401 / Unit 3 / Segmentation , Paging 16 / 22

Page # Frame #

Paging Hardware With TLB

CS6401 / Unit 3 / Segmentation , Paging 17 / 22

Effective Access Time
• Associative Lookup = time unit

– Can be < 10% of memory access time
• Hit ratio =

– Hit ratio – percentage of times that a page number is found in the
associative registers; ratio related to number of associative registers

• Consider = 80%, = 20ns for TLB search, 100ns for memory access
• Effective Access Time (EAT)
EAT = (1 +) + (2 +)(1 –)
= 2 + –
• Consider = 80%, = 20ns for TLB search, 100ns for memory access
– EAT = 0.80 x 100 + 0.20 x 200 = 120ns
• Consider more realistic hit ratio -> = 99%, = 20ns for TLB

search, 100ns for memory access
– EAT = 0.99 x 100 + 0.01 x 200 = 101ns

CS6401 / Unit 3 / Segmentation , Paging 18 / 22

Memory Protection

• Memory protection implemented by associating protection bit
with each frame to indicate if read-only or read-write access is
allowed
– Can also add more bits to indicate page execute-only, and so

on
• Valid-invalid bit attached to each entry in the page table:

– “ valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

– “ invalid” indicates that the page is not in the process’
logical address space

– Or use page-table length register (PTLR)
• Any violations result in a trap to the kernel

CS6401 / Unit 3 / Segmentation , Paging 19 / 22

Valid (v) or Invalid (i) Bit In A
Page Table

CS6401 / Unit 3 / Segmentation , Paging 20 / 22

Shared Pages

• Shared code
– One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)
– Similar to multiple threads sharing the same process

space
– Also useful for interprocess communication if sharing of

read-write pages is allowed
• Private code and data

– Each process keeps a separate copy of the code and data
– The pages for the private code and data can appear

anywhere in the logical address space

CS6401 / Unit 3 / Segmentation , Paging 21 / 22

Shared Pages Example

CS6401 / Unit 3 / Segmentation , Paging 22 / 22

