Semaphore

Wwww.snsgroups.com

Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

Semaphore S — integer variable
Can only be accessed via two indivisible (atomic) operations

—watt() andsignal)
e Originally called P() and V()

Definition of the walt() operation
wait(S) {

while (S <= 0)

. // busy wait

S--;
}
Definition of the sSignal () operation
signal(S) {

S++;

}

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 1/32

Semaphore Usage JE

Counting semaphore — integer value can range over an unrestricted domain
Binary semaphore — integer value can range only between 0 and 1
— Same as a mutex lock
Can solve various synchronization problems
Consider P; and P, that require S, to happen before S,
Create a semaphore “synch” initialized to O
P1:
Sis
signhal (synch);
P2:
walrt(synch);
S,;
Can implement a counting semaphore S as a binary semaphore

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 2/ 32

 Must guarantee that no two processes can execute the
walt() andsignal () onthesame semaphore at the

same time

« Thus, the implementation becomes the critical section problem
where the wal t and signal code are placed in the critical

section

— Could now have busy waiting in critical section
Implementation

* But implementation code is short
o Little busy waiting if critical section rarely occupied

* Note that applications may spend lots of time in critical sections
and therefore this is not a good solution

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 3/32

.k Semaphore Implementation with no Busy waiting =3

« With each semaphore there is an associated waiting queue
e Each entry in a waiting queue has two data items:

— value (of type integer)

— pointer to next record in the list
e Two operations:

— block — place the process invoking the operation on the
appropriate waiting queue

— wakeup —remove one of processes in the waiting queue and place
It in the ready queue

 typedef struct{
int value;
struct process *list;
} semaphore;

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 4/32

Qf Fi 7

" Implementation with no Busy waiting (Cont. 3

walt(semaphore *S) {
S->value--;

iIT (S—>value < 0) {
add this process to S->list;

block();

}
}

signal (semaphore *S) {
S->value++;

iIf (S->value <= 0) {
remove a process P from S->list;

wakeup(P);

}
}

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 5/32

Deadlock and Starvation

e Deadlock —two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

e LetSand Q be two semaphores initialized to 1

P, P,
wait(S); wait(Q);
wait(Q); wairt(S);
--éignal(S); - signal (Q);
signal (Q); signal(S);

« Starvation - indefinite blocking

— A process may never be removed from the semaphore queue in which it is
suspended

« Priority Inversion — Scheduling problem when lower-priority process holds a
lock needed by higher-priority process

— Solved via priority-inheritance protocol

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 6/32

Classical Problems of
Synchronization

 Classical problems used to test newly-proposed
synchronization schemes

—Bounded-Buffer Problem
—Readers and Writers Problem
— Dining-Philosophers Problem

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 7/32

Bounded-Buffer Problem &%

e N buffers, each can hold one item
 Semaphore muteX initialized to the value 1

e Semaphore Ful I initialized to the value 0

* Semaphore empty initialized to the value n

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 8/32

‘Z3Bounded Buffer Problem (Cont.) &

WWW.SNsgroups. .com

» The structure of the producer process
do {

/* produce an i1tem In next_produced */

wart(empty);
wartt(mutex);

/* add next produced to the buffer */
signal(mutex);
signal (full);
} while (true);

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 9/32

Bounded Buffer Problem (Cont.) &=

The structure of the consumer process

F
SN
> ’.& N
e
Ao/,

AT

Do {
waitt(full);
wartt(mutex);

/* remove an i1tem from buffer to next consumed */

signal(mutex);
signal (empty);

/* consume the 1tem In next consumed */
} while (true);

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 10/ 32

Readers-Writers Problem

« Adata set is shared among a number of concurrent processes

— Readers — only read the data set; they do not perform any
updates

— Writers - can both read and write
* Problem —allow multiple readers to read at the same time
— Only one single writer can access the shared data at the same
time
« Several variations of how readers and writers are considered - all
Involve some form of priorities
« Shared Data
— Data set
— Semaphore rw_mutex initialized to 1
— Semaphore mutex Initialized to 1
— Integer read_count initialized to O

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 11/32

..}Readers-Writers Problem (Cont. J%&

The structure of a writer process

do {
wart(rw_mutex);

/> W}iting I1Is performed */

signal (rw_mutex);
} while (true);

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 12 /32

i Readers-Writers Problem (Cont.) ¥

Wwww.snsgroups.com

E G,

7
TN
HEE BRI
& -y

ST

» The structure of a reader process
do { _
waitt(mutex);
read_count++;
iIf (read count == 1)
wart(rw_mutex);
signal (mutex);

/*-}éading iIs performed */

waitt(mutex);
read count--;
iIf (read count == 0)
signal(rw_mutex);
signal (mutex);
} while (true);

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 13/32

Readers-Writers Problem
Variations

I rrrurions
Wwww.snsgroups.com

« First variation — no reader kept waiting unless writer has permission to
use shared object

« Second variation — once writer is ready, it performs the write ASAP
e Both may have starvation leading to even more variations

* Problem is solved on some systems by kernel providing reader-writer
locks

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 14 /32

Dining-Philosophers Problem &

Wwww.snsgroups.com

Philosophers spend their lives alternating thinking and eating

Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at
a time) to eat from bowl

— Need both to eat, then release both when done
In the case of 5 philosophers
— Shared data
» Bowl of rice (data set)
» Semaphore chopstick [5] initialized to 1

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 15/32

Dining-Philosophers Problem Algorithm

* The structure of Philosopher i:
do {
wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);
// eat

signal (chopstick[i]);
signal (chopstick[(1 + 1) % 5]);

// think

1 while (TRUE);
What is the problem with this algorithm?

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 16 /32

Dining-Philosophers Problem Algorithm (Cont.) s3I&

» Deadlock handling

— Allow at most 4 philosophers to be sitting simultaneously at the
table.

— Allow a philosopher to pick up the forks only if both are available
(picking must be done in a critical section.

— Use an asymmetric solution -- an odd-numbered philosopher picks
up first the left chopstick and then the right chopstick. Even-
numbered philosopher picks up first the right chopstick and then
the left chopstick.

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 17732

CEETITUTIONS
Wwww.snsgroups.com

Problems with Semaphores

* Incorrect use of semaphore operations:
— signal (mutex) ... wait (mutex)

— wait (mutex) ... wait (mutex)
— Omitting of wait (mutex) or signal (mutex) (or both)

» Deadlock and starvation are possible.

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 18/ 32

Monitors

Wwww.snsgroups.com

* Ahigh-level abstraction that provides a convenient and effective mechanism for
process synchronization

« Abstract data type, internal variables only accessible by code within the procedure
* Only one process may be active within the monitor at a time
« But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations
procedure P1 (.) { ..- }

procedure Pn (.) {..}

Initialization code (.) { .. }

}
}

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 19/32

Schematic view of a Monitor

TUTIONS
WWW.SNsgroups.com

entry queue

shared data

"

operations

initialization
code

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 20/ 32

Condition Variables

Wwww.snsgroups.com

e condition X, Yy;
e Two operations are allowed on a condition variable:

— X.warlt() - aprocess that invokes the operation is suspended
until x.signal ()

— X.signal () -resumes one of processes (if any) that invoked
x.wairt()

e If no X.wart() on the variable, then it has no effect on the
variable

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 21/ 32

shared data

gqueues associated with

x, y conditions y O3

~

operations
initialization
code

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 22 /32

Condition Variables Choices &

Wwww.snsgroups.com

« If process P invokes X .signal (), and process Q is suspended in
X .walt(), what should happen next?

— Both Q and P cannot execute in paralel. If Q is resumed, then P must

walit

e Optionsinclude

1/30/2017

Signal and wait — P waits until Q either leaves the monitor or it waits for
another condition

Signal and continue — Q waits until P either leaves the monitor or it
waits for another condition

Both have pros and cons — language implementer can decide
Monitors implemented in Concurrent Pascal compromise

« P executing signal immediately leaves the monitor, Q is resumed
Implemented in other languages including Mesa, C#, Java

Prof.B.Anuradha / CS6401 / Semaphores, Monitors 23/ 32

Monitor Solution to Dining Philosophers S S

Wwww.snsgroups.com

monitor DiningPhilosophers

{
enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int 1) {
state[1] = HUNGRY;
test(1);
IT (state[i1] '= EATING) self|i1].wait;

void putdown (int 1) {
state[1] = THINKING;
// test left and right neighbors
test((h + 4) % 5);
test((h + 1) % 5);

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 24/ 32

Solution to Dining Philosophers £
(Cont.)

void test (int 1) {
IT ((state[(1 + 4) % 5] "= EATING) &&
(state[1] == HUNGRY) &&
(state[(1 + 1) % 5] = EATING)) {
state[1] = EATING ;
self[1].signal O ;
+

initialization_code() {
for (int i = 0; 1 < 5; i++)
state[1] = THINKING;

s

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 25/ 32

F
SN
& -“/ﬁ L)
af 478 \2
e @M
Ao/,

AT

 Each philosopher i invokes the operations pickup () and putdown() in
the following sequence:

DiningPhilosophers.pickup(i);
EAT
DiningPhilosophers.putdown(i);

» No deadlock, but starvation is possible

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 26 /32

]
0
‘g.
N
b,

E G,

7
" z
e R
. o),

AT

Monitor Implementation Using Semaphores 3

LTIy o
Wwww.snsgroups.com

e Variables
semaphore mutex; // (initially = 1)
semaphore next; // (inttially = 0)

Int next _count = O;
» Each procedure F will be replaced by
wartt(mutex) ;
boay of F;

iIT (next _count > 0)
signal (next)

else
signal (mutex);

e Mutual exclusion within a monitor is ensured

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 271/ 32

Monitor Implementation — Condition Variables

LIS FITU T101TS
Wwww.snsgroups.com

]
0
g.
N
b,

E G,
7
£ ‘% r.‘q"'.,
. o),
AT

e For each condition variable x, we have:

semaphore x _sem; // (initially = 0)
Int x_count = O;

« The operation x.wait can be implemented as:

X_count++;
1T (next_count > 0)
signal (next);
else
signal (mutex);
wart(x_sem);
x_count--;

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 28/ 32

Monitor Implementation (Cont.)

 The operation x.signal can be implemented as:

iIf (X _count > 0) {
next_count++;
signal (x_sem);
wait(next);
next_count--;

29/32

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors

1/30/2017

Resuming Processes within
a Monitor

If several processes queued on condition x, and x.signal() executed, which
should be resumed?

FCFS frequently not adequate
conditional-wait construct of the form x.wait(c)
— Where cis priority number
— Process with lowest number (highest priority) is scheduled next

Prof.B.Anuradha / CS6401 / Semaphores, Monitors

30/32

Single Resource allocation

* Allocate a single resource among competing processes using priority
numbers that specify the maximum time a process plans to use the
resource

R.acquire(t);

access the resurce;

.release;

« WhereRis aninstance of type ResourceAllocator

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 31/32

A Monitor to Allocate Single .
Resource e

monitor ResourceAllocator

{

boolean busy;

condition X;

void acquire(int time) {
1T (busy)

x.wart(time);

busy = TRUE;

+

void release() {
busy = FALSE;
x.signal(Q);

+

inttialization code() {
busy = FALSE;

}
}

1/30/2017 Prof.B.Anuradha / CS6401 / Semaphores, Monitors 32/32

