
Semaphore
• Synchronization tool that provides more sophisticated ways (than Mutex locks)

for process to synchronize their activities.
• Semaphore S – integer variable
• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()
• Originally called P() and V()

• Definition of the wait() operation
wait(S) {

while (S <= 0)
; // busy wait

S--;
}

• Definition of the signal() operation
signal(S) {

S++;
}

1 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Semaphore Usage
• Counting semaphore – integer value can range over an unrestricted domain
• Binary semaphore – integer value can range only between 0 and 1

– Same as a mutex lock
• Can solve various synchronization problems
• Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0
P1:

S1;
signal(synch);

P2:
wait(synch);

S2;

• Can implement a counting semaphore S as a binary semaphore

2 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Semaphore Implementation
• Must guarantee that no two processes can execute the
wait() and signal() on the same semaphore at the
same time

• Thus, the implementation becomes the critical section problem
where the wait and signal code are placed in the critical
section
– Could now have busy waiting in critical section

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections
and therefore this is not a good solution

3 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue
• Each entry in a waiting queue has two data items:

– value (of type integer)
– pointer to next record in the list

• Two operations:
– block – place the process invoking the operation on the

appropriate waiting queue
– wakeup – remove one of processes in the waiting queue and place

it in the ready queue

• typedef struct{
int value;
struct process *list;
} semaphore;

4 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S->list;
wakeup(P);

}
}

5 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an event that

can be caused by only one of the waiting processes
• Let S and Q be two semaphores initialized to 1

P0 P1
wait(S); wait(Q);
wait(Q); wait(S);

... ...
signal(S); signal(Q);
signal(Q); signal(S);

• Starvation – indefinite blocking
– A process may never be removed from the semaphore queue in which it is

suspended
• Priority Inversion – Scheduling problem when lower-priority process holds a

lock needed by higher-priority process
– Solved via priority-inheritance protocol

6 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Classical Problems of
Synchronization

• Classical problems used to test newly-proposed
synchronization schemes
– Bounded-Buffer Problem
– Readers and Writers Problem
– Dining-Philosophers Problem

7 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Bounded-Buffer Problem
• n buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value n

8 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Bounded Buffer Problem (Cont.)
• The structure of the producer process

do {
...
/* produce an item in next_produced */
...

wait(empty);
wait(mutex);

...
/* add next produced to the buffer */
...

signal(mutex);
signal(full);

} while (true);

9 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Bounded Buffer Problem (Cont.)
The structure of the consumer process

Do {
wait(full);
wait(mutex);

...
/* remove an item from buffer to next_consumed */

...
signal(mutex);
signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

10 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Readers-Writers Problem
• A data set is shared among a number of concurrent processes

– Readers – only read the data set; they do not perform any
updates

– Writers – can both read and write
• Problem – allow multiple readers to read at the same time

– Only one single writer can access the shared data at the same
time

• Several variations of how readers and writers are considered – all
involve some form of priorities

• Shared Data
– Data set
– Semaphore rw_mutex initialized to 1
– Semaphore mutex initialized to 1
– Integer read_count initialized to 0

11 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Readers-Writers Problem (Cont.)
The structure of a writer process

do {
wait(rw_mutex);

...
/* writing is performed */

...
signal(rw_mutex);

} while (true);

12 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Readers-Writers Problem (Cont.)
• The structure of a reader process

do {
wait(mutex);
read_count++;
if (read_count == 1)
wait(rw_mutex);

signal(mutex);
...

/* reading is performed */
...

wait(mutex);
read count--;
if (read_count == 0)

signal(rw_mutex);
signal(mutex);

} while (true);

13 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Readers-Writers Problem
Variations

• First variation – no reader kept waiting unless writer has permission to
use shared object

• Second variation – once writer is ready, it performs the write ASAP
• Both may have starvation leading to even more variations
• Problem is solved on some systems by kernel providing reader-writer

locks

14 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating
• Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at

a time) to eat from bowl
– Need both to eat, then release both when done

• In the case of 5 philosophers
– Shared data

• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1

15 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do {

wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);
• What is the problem with this algorithm?

16 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Dining-Philosophers Problem Algorithm (Cont.)

• Deadlock handling
– Allow at most 4 philosophers to be sitting simultaneously at the

table.
– Allow a philosopher to pick up the forks only if both are available

(picking must be done in a critical section.
– Use an asymmetric solution -- an odd-numbered philosopher picks

up first the left chopstick and then the right chopstick. Even-
numbered philosopher picks up first the right chopstick and then
the left chopstick.

17 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Problems with Semaphores

• Incorrect use of semaphore operations:

– signal (mutex) …. wait (mutex)

– wait (mutex) … wait (mutex)

– Omitting of wait (mutex) or signal (mutex) (or both)

• Deadlock and starvation are possible.

18 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Monitors
• A high-level abstraction that provides a convenient and effective mechanism for

process synchronization
• Abstract data type, internal variables only accessible by code within the procedure
• Only one process may be active within the monitor at a time
• But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}

19 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Schematic view of a Monitor

20 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Condition Variables
• condition x, y;
• Two operations are allowed on a condition variable:

– x.wait() – a process that invokes the operation is suspended
until x.signal()

– x.signal() – resumes one of processes (if any) that invoked
x.wait()

• If no x.wait() on the variable, then it has no effect on the
variable

21 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Monitor with Condition Variables

22 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Condition Variables Choices
• If process P invokes x.signal(), and process Q is suspended in
x.wait(), what should happen next?
– Both Q and P cannot execute in paralel. If Q is resumed, then P must

wait
• Options include

– Signal and wait – P waits until Q either leaves the monitor or it waits for
another condition

– Signal and continue – Q waits until P either leaves the monitor or it
waits for another condition

– Both have pros and cons – language implementer can decide
– Monitors implemented in Concurrent Pascal compromise

• P executing signal immediately leaves the monitor, Q is resumed
– Implemented in other languages including Mesa, C#, Java

23 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Monitor Solution to Dining Philosophers
monitor DiningPhilosophers
{

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

24 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Solution to Dining Philosophers
(Cont.)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;
}

}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

25 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

• Each philosopher i invokes the operations pickup() and putdown() in
the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

26 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Monitor Implementation Using Semaphores

• Variables

semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next_count = 0;

• Each procedure F will be replaced by

wait(mutex);
…

body of F;
…

if (next_count > 0)
signal(next)

else
signal(mutex);

• Mutual exclusion within a monitor is ensured

27 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Monitor Implementation – Condition Variables

• For each condition variable x, we have:

semaphore x_sem; // (initially = 0)
int x_count = 0;

• The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

28 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Monitor Implementation (Cont.)

• The operation x.signal can be implemented as:

if (x_count > 0) {
next_count++;
signal(x_sem);
wait(next);
next_count--;

}

29 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

Resuming Processes within
a Monitor

• If several processes queued on condition x, and x.signal() executed, which
should be resumed?

• FCFS frequently not adequate
• conditional-wait construct of the form x.wait(c)

– Where c is priority number
– Process with lowest number (highest priority) is scheduled next

30 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

• Allocate a single resource among competing processes using priority
numbers that specify the maximum time a process plans to use the
resource

R.acquire(t);
...

access the resurce;
...

R.release;

• Where R is an instance of type ResourceAllocator

Single Resource allocation

31 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

A Monitor to Allocate Single
Resource

monitor ResourceAllocator
{

boolean busy;
condition x;
void acquire(int time) {

if (busy)
x.wait(time);

busy = TRUE;
}
void release() {

busy = FALSE;
x.signal();

}
initialization code() {

busy = FALSE;
}

}
32 / 32Prof.B.Anuradha / CS6401 / Semaphores, Monitors1/30/2017

