Register No

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

INTERNAL ASSESSMENT EXAMINATION – I- ANSWER KEY

II Semester

Common to B.E-Computer Science and Engineering, B.E-Computer Science and Design &

B.E-Computer Science and Technology

19EE101 - Basic Electrical and Electronics Engineering

Regulations 2019

Duration	
Date	

: 1 Hour 30 Minutes : 30.05.2023

e

Session: FN Answer ALL questions Maximum: 50 Marks

	PART A - $(5 \times 2 = 10 \text{ marks})$						
Q.N 0	Question	M	СО	BL			
1	State Kirchhoff's Voltage Law. The voltage around a loop equals the sum of every voltage drop in the same loop for any closed network and equals zero. Put differently, the algebraic sum of every voltage in the loop has to be equal to zero	2	CO-1	L -2			
2	State the limitations of ohms' law. Ohm's law is applicable when the temperature of the conductor is constant Resistivity changes with temperature. The relation between voltage and current depends on the sign of voltage. It does not apply to semiconductors, which do not have a direct current-voltage relationship.	2	CO-1	L -2			
3	Define RMS value. The rms value of a sinusoidal voltage (or any time-varying voltage) is equivalent to the value of a dc voltage that causes an equal amount of heat (power dissipation) due to the circuit current flowing through a resistance	2	CO-1	L -2			
4	Write down the EMF equation of a DC generator. $E_{g} = \frac{PZ \phi N}{60 A} \text{volts}$	2	CO-2	L -2			
5	Give the application of DC Motor. Applications for DC motors are: elevators, steel mills, rolling mills, locomotives and excavators.	2	CO-2	L -2			
PART B - (2 X 13 = 26 marks)							
6.	(a) Determine the amount of total resistance between points A and B of the 06 Circuit shown in fig.	13	CO-1	L-3			

Inseries 61 + 2.18 =63.18 anthrean 2 57.11-5 -0-3.Sta In the above circuit, 40-0 and 6311-2 are connecter in parallel In parallel 46 × 63.18 = 2,906.28 = 26.61.0 46+63.18 109.18 and all P.2 R 3R In the above circuit 26.61_2 and 9.2 are connected in series In series, 26.61 2 +9.2 = 35.41 Po -8 35.6752 a 352 In the above circuit 3,5,61, 2 and 32 are connected in parallel. The parallel 35.61 × 3 = 106.83 35.613 38.61 = 2.75.2. 2.762 - 8 4 The amount a total resistence between points A and B of the circuit is 2.76 r

(b)		13	CO-1	L-3
	How is the Tamil Nadu electricity board calculating the electricity cost for the			
	domestic customer with the working principle of Energy meter? Assume your			
	home contains two 40W fluorescent lamps and one 60W fan at usage of 12 hours			
	per day. Calculate the electricity cost for the month. (Cost of Electricity per unit-			
	Rs 4)			
	Energy meter is an integrating meter. It gives the quantity of electrical energy			
	consumed over a specified period.			
	Principle When a conducting metal part is placed in an alternating magnetic field, eddy currents are induced in the metal part. The magnetic flux produced by these			
	eddy currents are made to interact with another magnetic field. Thus, the required			
	construction The salient parts of an induction type energy meter are schemati-			
	cally shown in Fig. 7.12.			
	∬ ∢ SP			
	•			
	$M_3 \rightarrow 0$			
	Fig. 7.12			
	The instrument consists of the following parts:			
	M_1 — Shuft magnet. The coll over this carries a current proportional to the system voltage.			
	M ₂ — Series magnet. The coil over this carries a current proportional to the system current			
	AD — Aluminium disc connected to the spindle (SP).			
	M ₃ — Brake magnet. This is a permanent magnet. It is so arranged that the aluminium disc is in the gap between the pole pieces of it. As a result of this,			
	when in rotation, the aluminium disc cut the permanent magnetic flux.			
	Assume:			
	Done Fair is 80 watte			
	a) one flowers cent large = 40 × 2 = 80 walts			
	3) cost to be calculated 30 days as a month.			
	Calculation for flowrscent dawnp.			
	A two flowscent lows = 40 x 2 = 30 time			
	P Running for 12 hors in a day			
	= 80 Walts X 12 Mas = 100 min			
	1) For the 30 days of month			
	= 80 months 960 where × 30 = 20,000			
	Approximitaly = 28.8 Kulm -> 0			
	a hill time dole Form			
	carculation just in the			
	Running for 12 hours = 80 × 12 = 700 WW			
	For 30 days of month = 960 x 30 - (1)			
	Peproximality = 28. 18 mm			
	Adding both = 28.8 + 28.8 = 21.57.6×4			
	One unit = Kwhr tor 5the ERS 230			

7.	(a)	<text><text><text><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></text></text></text>	13	CO-2	L-3				
		OR							
	(b)	Derive the emf equation of DC generator & determine the flux per pole for 4 pole DC machines having 260 wave connected conductors which generates an open circuit's voltage of 600V while running at 1500 rpm. Let $P -$ Number of poles in the generator $\phi -$ flux per pole in webers z - total number of armature conductors A - Number of parallel paths formed by the armature winding between the armature terminals A = 2, for wave wound armature winding N - speed of rotation of armature in RPM $E_g -$ emf induced across the armature terminals or emf induced in any one parallel path of the armature winding. According to Faraday's Law of electromagnetic induction, average emf induced in one conductor $= \frac{d\phi}{dt}$ [no. of turns = 1] Here $d\phi$ - flux cut by the conductor for one revolution $= P\phi$ (wb) and dt - time taken by the conductor for one revolution $= 60/N$ (sec.) \therefore Average emf generated in one conductor $= \frac{P\phi N}{60} \frac{\text{wb}}{\text{sec}}$ or volts No. of conductors connected in series in one parallel path $= Z/A$ \therefore EMF generated/path or generated EMF, $E_g = \frac{P\phi NZ}{60A}$ <i>Note:</i> The above is the emf is generated in the armature on open circuit. This means that no load is connected to the generator.	13	CO-2	L-3				

PART C –(1 x 14 = 14 Marks)						
8.	(a)	Calculate the current in the 50 Ω resistor in the network shown in fig using mesh analysis. Also determine the voltage drop across the 20 Ω resistor.	14	CO-2	L-3	
		20 Ω 30 Ω 40 Ω				
		$\begin{cases} 60 \Omega \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$				
		+ - + - 100 V 50 V				
		Apply KVL for Meshi (ABC3HA)				
		$0 = 20\overline{1} + 40(\overline{1} - \overline{1}_3) + 30(\overline{1} - \overline{1}_2)$				
		$0 = 90I_1 - 30I_2 - 40I_3 \rightarrow O$ APPly KV2 for Mesh 2 (H3F6H)				
		$-20+100 = 30(I_2-I_1)+50(I_2-I_3)+b0I_2$				
		80 = - 30] + 140] - 50] - 72) Apply KVL for Mesh 3(ICDFJ)				
		● 50+20=40(I3-Ii)+10I3+50(I3-I2)				
		$70 = -40I_1 - S0I_2 + 100I_3 - (3)$				
		By waing Eq. solving method				
		0 = 0 = 1 - 30 = 2 - 40 = 0				
		$(2 \times 3=) -90I_1 + 420I_2 - 150I_3 = 240$				
		-10-N				
		$39 I_2 - 19 I_3 = 24 \rightarrow 39$				

	$ (3) \times 4 =) - 170\overline{J}_{1} + 500 \overline{J}_{2} - 200\overline{J}_{3} = 320 $ $ (3) \times 4 =) - 170\overline{J}_{1} - 150\overline{J}_{2} + 200 \overline{J}_{3} = 210 $ $ (+) \qquad (+) \qquad (+) \qquad (-) \qquad (+) \qquad (-) \qquad (+) \qquad (+) \qquad (-) \qquad (+) \qquad$			
	-10 $71 \underline{T}_2 - 50 \underline{T}_3 = 11 - 5$			
	Øx71 => 276AII2-1349E3=1704			
	$ \begin{array}{c} (-) & (-) \\ (-) & (-) $			
	I I 3= 2.121 A FXB			
	subto in 3			
	$717_2 - 50(2.121) = 11$			
	7172=117.05			
	22= 1-04 m - 2 - 1 () ()			
	$90I_1 - 30(1.64) - 40(2.121) = 0$			
	I = 1.48 A T_1 = 1.48 A The current through son resistor is			
	$\frac{1}{5} = \frac{1}{5} = \frac{1}$			
	The village drop across the son resisted			
	Y202 = IR => (1.40) 20			
	V200= 29.6V			
	OP			
(b)	Why moving iron instruments is preferred for measuring both alternating	14	CO-1	L-4
(-)	current quantities (AC) & direct current quantities (DC). Justify your	- •		
	answers along with the working principle of the instrument. Moving iron instruments are commonly used for measuring both AC and DC			
	quantities due to their robustness, simplicity, and wide measuring range. These			
	instruments rely on the principle that the magnetic field produced by the current flowing through a coil interacts with the movable iron piece, resulting in a torque			
	that moves the pointer. In AC measurements, the iron piece oscillates back and			
	forth due to the alternating current, enabling accurate measurement of the RMS value. For DC measurements, the iron piece aligns with the magnetic field			
	produced by the current, providing a proportional indication of the magnitude.			

