
Study Guide for Operating Systems

Unit.1 - Introduction

 An OS is a program that acts as an intermediary between a user of a computer and the computer hardware
 Goals: Execute user programs, make the comp. system easy to use, utilize hardware efficiently
 Computer system: Hardware ↔ OS ↔ Applications ↔ Users (↔ = 'uses')
 OS is:

◦ Resource allocator: decides between conflicting requests for efficient and fair resource use
◦ Control program: controls execution of programs to prevent errors and improper use of computer

 Kernel: the one program running at all times on the computer
 Bootstrap program: loaded at power-up or reboot

◦ Stored in ROM or EPROM (known as firmware), Initializes all aspects of system, loads OS kernel and starts
execution

 I/O and CPU can execute concurrently
 Device controllers inform CPU that it is finished w/ operation by causing an interrupt

◦ Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which
contains the addresses of all the service routines

◦ Incoming interrupts are disabled while another interrupt is being processed
◦ Trap is a software generated interrupt caused by error or user request
◦ OS determines which type of interrupt has occurred by polling or the vectored interrupt system

 System call: request to the operating system to allow user to wait for I/O completion
 Device-status table: contains entry for each I/O device indicating its type, address, and state

◦ OS indexes into the I/O device table to determine device status and to modify the table entry to include
interrupt

 Storage structure:
◦ Main memory – random access, volatile
◦ Secondary storage – extension of main memory That provides large non-volatile storage
◦ Disk – divided into tracks which are subdivided into sectors. Disk controller determines logical interaction

between the device and the computer.
 Caching – copying information into faster storage system
 Multiprocessor Systems: Increased throughput, economy of

scale, increased reliability
◦ Can be asymmetric or symmetric
◦ Clustered systems – Linked multiprocessor systems

 Multiprogramming – Provides efficiency via job scheduling
◦ When OS has to wait (ex: for I/O), switches to another job

 Timesharing – CPU switches jobs so frequently that each user
can interact with each job while it is running (interactive computing)

 Dual-mode operation allows OS to protect itself and other system components – User mode and kernel mode
◦ Some instructions are only executable in kernel mode, these are privileged

 Single-threaded processes have one program counter, multi-threaded processes have one PC per thread
 Protection – mechanism for controlling access of processes or users to resources defined by the OS
 Security – defense of a system against attacks
 User IDs (UID), one per user, and Group IDs, determine which users and groups of users have which privileges

OS Structures
 User Interface (UI) – Can be Command-Line (CLI) or Graphics User Interface (GUI) or Batch

◦ These allow for the user to interact with the system services via system calls (typically written in C/C++)
 Other system services that a helpful to the user include: program execution, I/O operations, file-system

manipulation, communications, and error detection
 Services that exist to ensure efficient OS operation are: resource allocation, accounting, protection and security
 Most system calls are accessed by Application Program Interface (API) such as Win32, POSIX, Java
 Usually there is a number associated with each system call

◦ System call interface maintains a table indexed according to these numbers
 Parameters may need to be passed to the OS during a system call, may be done by:

◦ Passing in registers, address of parameter stored in a block, pushed onto the stack by the program and popped
off by the OS

◦ Block and stack methods do not limit the number
or length of parameters being passed

 Process control system calls include: end, abort, load,
execute, create/terminate process, wait, allocate/free
memory

 File management system calls include: create/delete
file, open/close file, read, write, get/set attributes

 Device management system calls: request/release
device, read, write, logically attach/detach devices

 Information maintenance system calls: get/set time,
get/set system data, get/set process/file/device attributes

 Communications system calls: create/delete
communication connection, send/receive, transfer status
information

 OS Layered approach:
◦ The operating system is divided into a number of layers (levels), each built on top of lower layers. The bottom

layer (layer 0), is the hardware; the highest (layer N) is the user interface
◦ With modularity, layers are selected such that each uses functions (operations) and services of only lower-level

layers
 Virtual machine: uses layered approach, treats hardware and the OS kernel as though they were all hardware.

◦ Host creates the illusion that a process has its own processor and own virtual memory
◦ Each guest provided with a 'virtual' copy of the underlying computer

 Application failures can generate core dump file capturing memory of the process
 Operating system failure can generate crash dump file containing kernel memory

Processes
 Process contains a program counter, stack, and data section.

◦ Text section: program code itself
◦ Stack: temporary data (function parameters, return addresses, local

variables)
◦ Data section: global variables
◦ Heap: contains memory dynamically allocated during run-time

 Process Control Block (PCB): contains information associated with each
process: process state, PC, CPU registers, scheduling information,
accounting information, I/O status information

 Types of processes:
◦ I/O Bound: spends more time doing I/O than computations, many

short CPU bursts
◦ CPU Bound: spends more time doing computations, few very

long CPU bursts
 When CPU switches to another process, the system must save the

state of the old process (to PCB) and load the saved state (from PCB)
for the new process via a context switch
◦ Time of a context switch is dependent on hardware

 Parent processes create children processes (form a tree)
◦ PID allows for process management
◦ Parents and children can share all/some/none resources
◦ Parents can execute concurrently with children or wait until

children terminate
◦ fork() system call creates new process
▪ exec() system call used after a fork to replace the processes' memory space with a new program

 Cooperating processes need interprocess communication (IPC): shared memory or message passing
 Message passing may be blocking or non-blocking

◦ Blocking is considered synchronous
▪ Blocking send has the sender block until the message is received
▪ Blocking receive has the receiver block until a message is available

◦ Non-blocking is considered asynchronous
▪ Non-blocking send has the sender send the message and continue
▪ Non-blocking receive has the receiver receive a valid message or null

Unit 2 – Threads
 Threads are fundamental unit of CPU utilization that forms the basis of multi-threaded computer systems
 Process creation is heavy-weight while thread creation is light-weight

◦ Can simplify code and increase efficiency
 Kernels are generally multi-threaded
 Multi-threading models include: Many-to-One, One-to-One, Many-to-Many

◦ Many-to-One: Many user-level threads mapped to single kernel thread
◦ One-to-One: Each user-level thread maps to kernel thread
◦ Many-to-Many: Many user-level threads mapped to many kernel threads

 Thread library provides programmer with API for creating and managing threads
 Issues include: thread cancellation, signal handling (synchronous/asynchronous), handling thread-specific data, and

scheduler activations.
◦ Cancellation:
▪ Asynchronous cancellation terminates the target thread immediately
▪ Deferred cancellation allows the target thread to periodically check if it should be canceled

◦ Signal handler processes signals generated by a particular event, delivered to a process, handled
◦ Scheduler activations provide upcalls – a communication mechanism from the kernel to the thread library.
▪ Allows application to maintain the correct number of kernel threads

CPU Scheduling
 Process execution consists of a cycle of CPU execution and I/O wait
 CPU scheduling decisions take place when a process:

◦ Switches from running to waiting (nonpreemptive)
◦ Switches from running to ready (preemptive)
◦ Switches from waiting to ready (preemptive)
◦ Terminates (nonpreemptive)

 The dispatcher module gives control of the CPU to the process selected by the short-term scheduler
◦ Dispatch latency- the time it takes for the dispatcher to stop one process and start another

 Scheduling algorithms are chosen based on optimization criteria (ex: throughput, turnaround time, etc.)
◦ FCFS, SJF, Shortest-Remaining-Time-First (preemptive SJF), Round Robin, Priority

 Determining length of next CPU burst: Exponential Averaging:
1. tn = actual length of nth CPU burst
2. τn+1 = predicted value for the next CPU burst
3. α, 0 ≤ α ≤ 1 (commonly α set to 1/2)
4. Define: τn+1 = α*tn + (1-α)τn

 Priority Scheduling can result in starvation, which can be solved by
aging a process (as time progresses, increase the priority)

 In Round Robin, small time quantums can result in large amounts of
context switches
◦ Time quantum should be chosen so that 80% of processes have

shorter burst times that the time quantum
 Multilevel Queues and Multilevel Feedback Queues have multiple

process queues that have different priority levels
◦ In the Feedback queue, priority is not fixed → Processes can be promoted and demoted to different queues
◦ Feedback queues can have different scheduling algorithms at different levels

 Multiprocessor Scheduling is done in several different ways:
◦ Asymmetric multiprocessing: only one processor accesses system data structures → no need to data share
◦ Symmetric multiprocessing: each processor is self-scheduling (currently the most common method)
◦ Processor affinity: a process running on one processor is more likely to continue to run on the same processor

(so that the processor's memory still contains data specific to that specific process)
 Little's Formula can help determine average wait time per process in any scheduling algorithm:

◦ n = λ x W
◦ n = avg queue length; W = avg waiting time in queue; λ = average arrival rate into queue

 Simulations are programmed models of a computer system with variable clocks
◦ Used to gather statistics indicating algorithm performance
◦ Running simulations is more accurate than queuing models (like Little's Law)

Although more accurate, high cost and high risk

boolean TestAndSet (boolean *target){
boolean rv = *target;
*target = TRUE;"
return rv:

}

do {
while (TestAndSet (&lock))

; // do
nothing

// critical section
lock = FALSE;
// remainder section

} while (TRUE);

void Swap (boolean *a, boolean *b){
boolean temp = *a;
*a = *b;
*b = temp:

}

do {
key = TRUE;
while (key == TRUE)

Swap (&lock,
&key);

// critical section
lock = FALSE;
// remainder section

} while (TRUE);

Unit 3 – Process Synchronization
 Race Condition: several processes access and manipulate the same data concurrently, outcome depends on which

order each access takes place.
 Each process has critical section of code, where it is manipulating data

◦ To solve critical section problem each process must ask permission to enter critical section in entry section,
follow critical section with exit section and then execute the remainder section

◦ Especially difficult to solve this problem in preemptive kernels
 Peterson's Solution: solution for two processes

◦ Two processes share two variables: int turn and Boolean flag[2]
◦ turn: whose turn it is to enter the critical section
◦ flag: indication of whether or not a process is ready to enter critical section
▪ flag[i] = true indicates that process Pi is ready

◦ Algorithm for process Pi:
do {

flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j)

critical section
flag[i] = FALSE;
remainder section

} while (TRUE);
 Modern machines provide atomic hardware instructions: Atomic = non-interruptable
 Solution using Locks:

do {
acquire lock

critical section
release lock

remainder section
} while (TRUE);

 Solution using Test-And-Set: Shared boolean variable lock, initialized to FALSE

 Solution using Swap: Shared bool variable lock initialized to FALSE; Each process has local bool variable key

 Semaphore: Synchronization tool that does not require busy waiting
◦ Standard operations: wait() and signal() ← these are the only operations that can access semaphore S
◦ Can have counting (unrestricted range) and binary (0 or 1) semaphores

 Deadlock: Two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting
processes (most OSes do not prevent or deal with deadlocks)
◦ Can cause starvation and priority inversion (lower priority process holds lock needed by higher-priority

process)

 Deadlocks
 Deadlock Characteristics: deadlock can occur if these conditions hold simultaneously

◦ Mutual Exclusion: only one process at a time can use a resource
◦ Hold and Wait: process holding one resource is waiting to acquire resource held by another process
◦ No Preemption: a resource can be released only be the process holding it after the process completed its task
◦ Circular Wait: set of waiting processes such that Pn-1 is waiting for resource from Pn, and Pn is waiting for P0

▪ “Dining Philosophers” in deadlock

Unit 4 – Memory Management

 Cache sits between main memory and CPU registers
 Base and limit registers define logical address space usable by a process
 Compiled code addresses bind to relocatable addresses

◦ Can happen at three different stages
▪ Compile time: If memory location known a priori, absolute code can be generated
▪ Load time: Must generate relocatable code if memory location not known at compile time
▪ Execution time: Binding delayed until run time if the process can be moved during its execution

 Memory-Management Unit (MMU) device that maps virtual to physical address
 Simple scheme uses a relocation register which just adds a base value to address
 Swapping allows total physical memory space of processes to exceed physical

memory
◦ Def: process swapped out temporarily to backing store then brought back in

for continued execution
 Backing store: fast disk large enough to accommodate copes of all memory images
 Roll out, roll in: swapping variant for priority-based scheduling.

◦ Lower priority process swapped out so that higher priority process can be
loaded

 Solutions to Dynamic Storage-Allocation Problem:
◦ First-fit: allocate the first hole that is big enough
◦ Best-fit: allocate the smallest hole that is big enough (must search entire list) → smallest leftover hole
◦ Worst-fit: allocate the largest hole (search entire list) → largest leftover hole

 External Fragmentation: total memory space exists to satisfy request, but is not contiguous
◦ Reduced by compaction: relocate free memory to be together in one block
▪ Only possible if relocation is dynamic

 Internal Fragmentation: allocated memory may be slightly larger than requested memory
 Physical memory divided into fixed-sized frames: size is power of 2, between 512 bytes and 16 MB
 Logical memory divided into same sized blocks: pages
 Page table used to translate logical to physical addresses

◦ Page number (p): used as an index into a page table
◦ Page offset (d): combined with base address to define the physical memory address

 Free-frame list is maintained to keep track of which frames can be allocated

For given logical address space 2m and page size 2n

Main Memory Continued

 Transition Look-aside Buffer (TLB) is a CPU cache that memory management hardware uses to improve virtual
address translation speed
◦ Typically small – 64 to 1024 entries
◦ On TLB miss, value loaded to TLB for faster access next time
◦ TLB is associative – searched in parallel

Paging with TLB Paging without TLB

 Effective Access Time: EAT = (1 + ε) α + (2 + ε)(1 – α)
◦ ε = time unit, α = hit ratio

 Valid and invalid bits can be used to protect memory
◦ “Valid” if the associated page is in the process' logical address space, so it is a legal page

 Can have multilevel page tables (paged page tables)
 Hashed Page Tables: virtual page number hashed into page table

◦ Page table has chain of elements hashing to the same location
◦ Each element has (1) virtual page number, (2) value of mapped page frame, (3) a pointer to the next element
◦ Search through the chain for virtual page number

 Segment table – maps two-dimensional physical addresses
◦ Entries protected with valid bits and r/w/x privileges

Segmentation example Page table example

Virtual Memory
 Virtual memory: separation of user logical memory and physical memory

◦ Only part of program needs to be in memory for execution → logical address space > physical address space
◦ Allows address spaces to be shared by multiple processes → less swapping
◦ Allows pages to be shared during fork(), speeding process creation

 Page fault results from the first time there is a reference to a specific page → traps the OS
◦ Must decide to abort if the reference is invalid, or if the desired page is just not in memory yet
▪ If the latter: get empty frame, swap page into frame, reset tables to indicate page now in memory, set

validation bit, restart instruction that caused the page fault
◦ If an instruction accesses multiple pages near each other → less “pain” because of locality of reference

 Demand Paging only brings a page into memory when it is needed → less I/O and memory needed
◦ Lazy swapper – never swaps a page into memory unless page will be needed
◦ Could result in a lot of page-faults
◦ Performance: EAT = [(1-p)*memory access + p*(page fault overhead + swap page out + swap page in + restart

overhead)]; where Page Fault Rate 0 p 1
▪ if p = 0, no page faults; if p = 1, every reference is a fault

◦ Can optimize demand paging by loading entire process image to swap space at process load time
 Pure Demand Paging: process starts with no pages in memory
 Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory

◦ If either process modifies a shared page, only then is the page copied
 Modify (dirty) bit can be used to reduce overhead of page transfers → only modified pages written to disk
 When a page is replaced, write to disk if it has been marked dirty and swap in desired page
 Pages can be replaced using different algorithms: FIFO, LRU (below)

◦ Stack can be used to record the most recent page references (LRU is a “stack” algorithm)

◦ Second chance algorithm uses a reference bit
▪ If 1, decrement and leave in memory
▪ If 0, replace next page

 Fixed page allocation: Proportional allocation – Allocate according to size of process
◦ si = size of process Pi, S = Σsi, m = total number of frames, ai – allocation for P i

◦ ai = (si/S)*m
 Global replacement: process selects a replacement frame from set of all frames

◦ One process can take frame from another
◦ Process execution time can vary greatly
◦ Greater throughput

 Local replacement: each process selects from only its own set of allocated frames
◦ More consistent performance
◦ Possible under-utilization of memory

 Page-fault rate is very high if a process does not have “enough” pages
◦ Thrashing: a process is busy swapping pages in and out → minimal work is actually being performed

 Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to a page

in memory
 I/O Interlock: Pages must sometimes be locked into memory

Unit 5 – File-System Interface

 File – Uniform logical view of information storage (no matter the medium)
◦ Mapped onto physical devices (usually nonvolatile)
◦ Smallest allotment of nameable storage
◦ Types: Data (numeric, character, binary), Program, Free form, Structured
◦ Structure decided by OS and/or program/programmer

 Attributes:
◦ Name: Only info in human-readable form
◦ Identifier: Unique tag, identifies file within the file system
◦ Type, Size
◦ Location: pointer to file location
◦ Time, date, user identification

 File is an abstract data type
 Operations: create, write, read, reposition within file, delete, truncate
 Global table maintained containing process-independent open file information: open-file table

◦ Per-process open file table contains pertinent info, plus pointer to entry in global open file table
 Open file locking: mediates access to a file (shared or exclusive)

◦ Mandatory – access denied depending on locks held and requested
◦ Advisory – process can find status of locks and decide what to do

 File type can indicate internal file structure
 Access Methods: Sequential access, direct access

◦ Sequential Access: tape model of a file
◦ Direct Access: random access, relative access

 Disk can be subdivided into partitions; disks or partitions can be RAID
protected against failure.
◦ Can be used raw without a file-system or formatted with a file system
◦ Partitions also knows as minidisks, slices

File-System Organization

 Volume contains file system: also tracks file system's info in device directory or volume table of contents
 File system can be general or special-purpose. Some special purpose FS:

◦ tmpfs – temporary file system in volatile memory
◦ objfs – virtual file system that gives debuggers access to kernel symbols
◦ ctfs – virtual file system that maintains info to manage which processes start when system boots
◦ lofs – loop back file system allows one file system to be accessed in place of another
◦ procfs – virtual file system that presents information on all processes as a file system

 Directory is similar to symbol table – translating file names into their directory entries
◦ Should be efficient, convenient to users, logical grouping
◦ Tree structured is most popular – allows for grouping
◦ Commands for manipulating: remove – rm<file-name> ; make new sub directory - mkdir<dir-name>

 Current directory: default location for activities – can also specify a path to perform activities in
 Acyclic-graph directories adds ability to directly share directories between users

◦ Acyclic can be guaranteed by: only allowing shared files, not shared sub directories; garbage collection;
mechanism to check whether new links are OK

 File system must be mounted before it can be accessed – kernel data structure keeps track of mount points
 In a file sharing system User IDs and Group IDs help identify a user's permissions
 Client-server allows multiple clients to mount remote file systems from servers – NFS (UNIX), CIFS (Windows)
 Consistency semantics specify how multiple users are to access a shared file simultaneously – similar to

synchronization algorithms from Ch.7
◦ One way of protection is Controlled Access: when file created, determine r/w/x access for users/groups

File System Implementation
 File system resides on secondary storage – disks; file system is organized into layers →
 File control block: storage structure consisting of information about a file (exist per-file)
 Device driver: controls the physical device; manage I/O devices
 File organization module: understands files, logical addresses, and physical blocks

◦ Translates logical block number to physical block number
◦ Manages free space, disk allocation

 Logical file system: manages metadata information – maintains file control blocks
 Boot control block: contains info needed by system to boot OS from volume
 Volume control block: contains volume details; ex: total # blocks, # free blocks, block size, free block pointers
 Root partition: contains OS; mounted at boot time
 For all partitions, system is consistency checked at mount time

◦ Check metadata for correctness – only allow mount to occur if so
 Virtual file systems provide object-oriented way of implementing file systems
 Directories can be implemented as Linear Lists or Hash Tables

◦ Linear list of file names with pointer to data blocks – simple but slow
◦ Hash table – linear list with hash data structure – decreased search time
▪ Good if entries are fixed size
▪ Collisions can occur in hash tables when two file names hash to same

location
 Contiguous allocation: each file occupies set of contiguous blocks

(a) open() (b) read()

◦ Simple, best performance in most cases; problem – finding space
for file, external fragmentation

◦ Extent based file systems are modified contiguous allocation
schemes – extent is allocated for file allocation

 Linked Allocation: each file is a linked list of blocks – no external
fragmentation
◦ Locating a block can take many I/Os and disk seeks

 Indexed Allocation: each file has its own index block(s) of pointers to
its data blocks
◦ Need index table; can be random access; dynamic access without

external fragmentation but has overhead
 Best methods: linked good for sequential, not random; contiguous

good for sequential and random
 File system maintains free-space list to track available blocks/clusters
 Bit vector or bit map (n blocks): block number calculation →

(#bits/word)*(# 0-value words)+(offset for 1st bit)

◦ Example:

 Space maps (used in ZFS) divide device space into metaslab units and
manages metaslabs
◦ Each metaslab has associated space map

 Buffer cache – separate section of main memory for frequently used
blocks

 Synchronous writes sometimes requested by apps or needed by OS –
no buffering

◦ Asynchronous writes are more common, buffer-able, faster
 Free-behind and read-ahead techniques to optimize sequential access
 Page cache caches pages rather than disk blocks using virtual memory

techniques and addresses
◦ Memory mapped I/O uses page cache while routine I/O through

file system uses buffer (disk) cache
 Unified buffer cache: uses same page cache to cache both memory-

mapped pages and ordinary file system I/O to
avoid double caching

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 256 MB)
if clusters of 4 blocks -> 64MB of memory

