
UNIT V FILE SYSTEMS

Implementing File-system: File-System Structure, File-System Implementation, Directory
Implementation, Allocation methods, Free-space management.

Case Study- Real Time operating system and Mobile operating system.

File-System - File Concept

 Contiguous logical address space
 Types:

o Data
 numeric
 character
 binary

o Program
 Contents defined by file’s creator

o Many types
 Consider text file, source file, executable file

File Attributes
 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection, security, and usage monitoring
 Information about files are kept in the directory structure, which is maintained on the disk
 Many variations, including extended file attributes such as file checksum
 Information kept in the directory structure

File Operations

 File is an abstract data type
 Create
 Write – at write pointer location
 Read – at read pointer location
 Reposition within file - seek
 Delete
 Truncate
 Open(Fi) – search the directory structure on disk for entry Fi, and move the content of entry to

memory
 Close (Fi) – move the content of entry Fi in memory to directory structure on disk

Open Files
 Several pieces of data are needed to manage open files:

o Open-file table: tracks open files
o File pointer: pointer to last read/write location, per process that has the file open
o File-open count: counter of number of times a file is open – to allow removal of data

from open-file table when last processes closes it

o Disk location of the file: cache of data access information
o Access rights: per-process access mode information

Open File Locking

 Provided by some operating systems and file systems
o Similar to reader-writer locks
o Shared lock similar to reader lock – several processes can acquire concurrently
o Exclusive lock similar to writer lock

 Mediates access to a file
 Mandatory or advisory:

o Mandatory – access is denied depending on locks held and requested
o Advisory – processes can find status of locks and decide what to do

File Types – Name, Extension

File Structure

 None - sequence of words, bytes
 Simple record structure

o Lines
o Fixed length
o Variable length

 Complex Structures
o Formatted document
o Relocatable load file

 Can simulate last two with first method by inserting appropriate control characters
 Who decides:

o Operating system
o Program

Sequential-access File

Access Methods

 Sequential Access
 read next
 write next
 reset
 no read after last write
 (rewrite)

 Direct Access – file is fixed length logical records
 read n
 write n
 position to n
 read next
 write next
 rewrite n
 n = relative block number

 Relative block numbers allow OS to decide where file should be placed
o See allocation problem in Ch 12

Simulation of Sequential Access on Direct-access File

Other Access Methods

 Can be built on top of base methods
 General involve creation of an index for the file
 Keep index in memory for fast determination of location of data to be operated on (consider UPC

code plus record of data about that item)
 If too large, index (in memory) of the index (on disk)
 IBM indexed sequential-access method (ISAM)

o Small master index, points to disk blocks of secondary index
o File kept sorted on a defined key
o All done by the OS

 VMS operating system provides index and relative files as another example (see next slide)
Example of Index and Relative Files

Directory Structure

 A collection of nodes containing information about all files

Both the directory structure and the files reside on disk

Disk Structure

 Disk can be subdivided into partitions
 Disks or partitions can be RAID protected against failure
 Disk or partition can be used raw – without a file system, or formatted with a file system
 Partitions also known as minidisks, slices
 Entity containing file system known as a volume
 Each volume containing file system also tracks that file system’s info in device directory or

volume table of contents
 As well as general-purpose file systems there are many special-purpose file systems,

frequently all within the same operating system or computer

A Typical File-system Organization

Types of File Systems

 We mostly talk of general-purpose file systems
 But systems frequently have may file systems, some general- and some special- purpose
 Consider Solaris has

o tmpfs – memory-based volatile FS for fast, temporary I/O
o objfs – interface into kernel memory to get kernel symbols for debugging
o ctfs – contract file system for managing daemons
o lofs – loopback file system allows one FS to be accessed in place of another
o procfs – kernel interface to process structures
o ufs, zfs – general purpose file systems

Operations Performed on Directory

 Search for a file
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

Directory Organization
 Efficiency – locating a file quickly
 Naming – convenient to users

o Two users can have same name for different files
o The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all Java programs, all games, …)
Single-Level Directory
 A single directory for all users

 Naming problem
 Grouping problem

Two-Level Directory

 Separate directory for each user

 Path name
 Can have the same file name for different user
 Efficient searching
 No grouping capability

Tree-Structured Directories


Efficient searching

 Grouping Capability
 Current directory (working directory)

o cd /spell/mail/prog
o type list

 Absolute or relative path name
 Creating a new file is done in current directory
 Delete a file

 rm <file-name>
 Creating a new subdirectory is done in current directory

 mkdir <dir-name>
 Example: if in current directory /mail
 mkdir count

Deleting “mail”  deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

 Two different names (aliasing)
 If dict deletes list  dangling pointer

o Solutions:
o Backpointers, so we can delete all pointers

Variable size records a problem
o Backpointers using a daisy chain organization
o Entry-hold-count solution

 New directory entry type
o Link – another name (pointer) to an existing file
o Resolve the link – follow pointer to locate the file

General Graph Directory

 How do we guarantee no cycles?

o Allow only links to file not subdirectories
o Garbage collection
o Every time a new link is added use a cycle detection algorithm to determine whether it is

OK

File System Mounting

 A file system must be mounted before it can be accessed

 A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a mount point

Mount Point

File Sharing

 Sharing of files on multi-user systems is desirable
 Sharing may be done through a protection scheme
 On distributed systems, files may be shared across a network
 Network File System (NFS) is a common distributed file-sharing method
 If multi-user system

o User IDs identify users, allowing permissions and protections to be per-user
Group IDs allow users to be in groups, permitting group access rights

o Owner of a file / directory
o Group of a file / directory

File Sharing – Remote File Systems

 Uses networking to allow file system access between systems
o Manually via programs like FTP
o Automatically, seamlessly using distributed file systems
o Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems from servers
o Server can serve multiple clients
o Client and user-on-client identification is insecure or complicated
o NFS is standard UNIX client-server file sharing protocol
o CIFS is standard Windows protocol
o Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS,
Active Directory implement unified access to information needed for remote computing

File Sharing – Failure Modes

 All file systems have failure modes
o For example corruption of directory structures or other non-user data, called metadata

 Remote file systems add new failure modes, due to network failure, server failure
 Recovery from failure can involve state information about status of each remote request
 Stateless protocols such as NFS v3 include all information in each request, allowing easy

recovery but less security

File Sharing – Consistency Semantic

 Specify how multiple users are to access a shared file simultaneously
o Similar to process synchronization algorithms

 Tend to be less complex due to disk I/O and network latency (for remote file
systems

o Andrew File System (AFS) implemented complex remote file sharing semantics
o Unix file system (UFS) implements:

 Writes to an open file visible immediately to other users of the same open file
 Sharing file pointer to allow multiple users to read and write concurrently

o AFS has session semantics
 Writes only visible to sessions starting after the file is closed

Protection
 File owner/creator should be able to control:

o what can be done
o by whom

 Types of access
o Read
o Write
o Execute
o Append
o Delete
o List

Access Lists and Groups

 Mode of access: read, write, execute
 Three classes of users on Unix / Linux

RWX
a) owner access 7  1 1 1
 RWX
b) group access 6  1 1 0

RWX
c) public access 1  1 0 0

 Ask manager to create a group (unique name), say G, and add some users to the group.
 For a particular file (say game) or subdirectory, define an appropriate access.

File System Implementation

File-System Structure

 File structure
o Logical storage unit
o Collection of related information

 File system resides on secondary storage (disks)

o Provided user interface to storage, mapping logical to physical
o Provides efficient and convenient access to disk by allowing data to be stored, located

retrieved easily
 Disk provides in-place rewrite and random access

o I/O transfers performed in blocks of sectors (usually 512 bytes)
 File control block – storage structure consisting of information about a file
 Device driver controls the physical device
 File system organized into layers

Layered File System

File System Layers

 Device drivers manage I/O devices at the I/O control layer
o Given commands like “read drive1, cylinder 72, track 2, sector 10, into memory location

1060” outputs low-level hardware specific commands to hardware controller
 Basic file system given command like “retrieve block 123” translates to device driver
 Also manages memory buffers and caches (allocation, freeing, replacement)

o Buffers hold data in transit
o Caches hold frequently used data

 File organization module understands files, logical address, and physical blocks
o Translates logical block # to physical block #
o Manages free space, disk allocation

 Logical file system manages metadata information
o Translates file name into file number, file handle, location by maintaining file control

blocks (inodes in UNIX)
o Directory management
o Protection

 Layering useful for reducing complexity and redundancy, but adds overhead and can decrease
performanceTranslates file name into file number, file handle, location by maintaining file control
blocks (inodes in UNIX)

 Many file systems, sometimes many within an operating system
o Each with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS; Windows has

FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray, Linux has more than 40 types,
with extended file system ext2 and ext3 leading; plus distributed file systems, etc.)

File-System Implementation

 We have system calls at the API level, but how do we implement their functions?
o On-disk and in-memory structures

 Boot control block contains info needed by system to boot OS from that volume
o Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table) contains volume details
o Total # of blocks, # of free blocks, block size, free block pointers or array

 Directory structure organizes the files
o Names and inode numbers, master file table

 Per-file File Control Block (FCB) contains many details about the file
o inode number, permissions, size, dates
o NFTS stores into in master file table using relational DB structures

In-Memory File System Structures

 Mount table storing file system mounts, mount points, file system types
 The following figure illustrates the necessary file system structures provided by the operating

systems

 Figure 12-3(a) refers to opening a file Figure 12-3(b) refers to reading a file
 Plus buffers hold data blocks from secondary storage
 Open returns a file handle for subsequent use
 Data from read eventually copied to specified user process memory address

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or raw – just a sequence of blocks
with no file system

 Boot block can point to boot volume or boot loader set of blocks that contain enough code to
know how to load the kernel from the file system

o Or a boot management program for multi-os booting
 Root partition contains the OS, other partitions can hold other Oses, other file systems, or be raw

o Mounted at boot time
o Other partitions can mount automatically or manually

 At mount time, file system consistency checked
o Is all metadata correct?

 If not, fix it, try again
 If yes, add to mount table, allow access

Virtual File Systems
 Virtual File Systems (VFS) on Unix provide an object-oriented way of implementing file

systems
 VFS allows the same system call interface (the API) to be used for different types of file systems

o Separates file-system generic operations from implementation details
o Implementation can be one of many file systems types, or network file system

 Implements vnodes which hold inodes or network file details
o Then dispatches operation to appropriate file system implementation routines

 The API is to the VFS interface, rather than any specific type of file system

Virtual File System Implementation

 For example, Linux has four object types:
o inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be implemented
o Every object has a pointer to a function table

 Function table has addresses of routines to implement that function on that object
 For example:

• int open(. . .)—Open a file
• int close(. . .)—Close an already-open file
• ssize t read(. . .)—Read from a file
• ssize t write(. . .)—Write to a file
• int mmap(. . .)—Memory-map a file

Directory Implementation

 Linear list of file names with pointer to the data blocks
o Simple to program
o Time-consuming to execute

 Linear search time
 Could keep ordered alphabetically via linked list or use B+ tree

 Hash Table – linear list with hash data structure
o Decreases directory search time
o Collisions – situations where two file names hash to the same location
o Only good if entries are fixed size, or use chained-overflow method

Allocation Methods – Contiguous
 An allocation method refers to how disk blocks are allocated for files:
 Contiguous allocation – each file occupies set of contiguous blocks

o Best performance in most cases
o Simple – only starting location (block #) and length (number of blocks) are required
o Problems include finding space for file, knowing file size, external fragmentation, need for

compaction off-line (downtime) or on-line

1. Contiguous Allocation
n Mapping from logical to physical

n Block to be accessed = Q + starting address

Displacement into block = R

2. Extent-Based Systems
 Many newer file systems (i.e., Veritas File System) use a modified contiguous allocation scheme
 Extent-based file systems allocate disk blocks in extents
 An extent is a contiguous block of disks

o Extents are allocated for file allocation
o A file consists of one or more extents
o

3.Allocation Methods – Linked
 Linked allocation – each file a linked list of blocks

o File ends at nil pointer
o No external fragmentation
o Each block contains pointer to next block
o No compaction, external fragmentation
o Free space management system called when new block needed
o Improve efficiency by clustering blocks into groups but increases internal fragmentation
o Reliability can be a problem
o Locating a block can take many I/Os and disk seeks

 FAT (File Allocation Table) variation
o Beginning of volume has table, indexed by block number
o Much like a linked list, but faster on disk and cacheable
o New block allocation simple

Linked Allocation
 Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk

Mapping

Block to be accessed is the Qth block in the linked chain of blocks representing the file.
Displacement into block = R + 1
Linked Allocation

File-Allocation Table

4.Allocation Methods – Indexed
o Each file has its own index block(s) of pointers to its data blocks

 Logical view

index table

Example of Indexed Allocation

 Need index table
 Random access
 Dynamic access without external fragmentation, but have overhead of index block
 Mapping from logical to physical in a file of maximum size of 256K bytes and block size of 512

bytes. We need only 1 block for index table

Q = displacement into index table
R = displacement into block

 Mapping from logical to physical in a file of unbounded length (block size of 512 words)
 Linked scheme – Link blocks of index table (no limit on size)

Q1 = block of index table
R1 is used as follows:

Q2 = displacement into block of index table
R2 displacement into block of file:

 Two-level index (4K blocks could store 1,024 four-byte pointers in outer
index -> 1,048,567 data blocks and file size of up to 4GB)

Q1 = displacement into outer-index
R1 is used as follows:

Q2 = displacement into block of index table
R2 displacement into block of file:

Combined Scheme: UNIX UFS

4K bytes per block, 32-bit addresses

More index blocks than can be addressed with 32-bit file pointer

Performance

 Best method depends on file access type
o Contiguous great for sequential and random

 Linked good for sequential, not random
 Declare access type at creation -> select either contiguous or linked
 Indexed more complex

o Single block access could require 2 index block reads then data block read
o Clustering can help improve throughput, reduce CPU overhead

 Adding instructions to the execution path to save one disk I/O is reasonable
o Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second
o Typical disk drive at 250 I/Os per second

 159,000 MIPS / 250 = 630 million instructions during one disk I/O
o Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/O

Free-Space Management
 File system maintains free-space list to track available blocks/clusters

o (Using term “block” for simplicity)
 Bit vector or bit map (n blocks)

Block number calculation
(number of bits per word) * (number of 0-value words) + offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

 Bit map requires extra space
o Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 32MB)
if clusters of 4 blocks -> 8MB of memory

 Easy to get contiguous files
Linked Free Space List on Disk

 Linked list (free list)
o Cannot get contiguous space easily
o No waste of space
o No need to traverse the entire list (if # free blocks recorded)

 Grouping
o Modify linked list to store address of next n-1 free blocks in first free block, plus a pointer

to next block that contains free-block-pointers (like this one)
 Counting

o Because space is frequently contiguously used and freed, with contiguous-allocation
allocation, extents, or clustering
 Keep address of first free block and count of following free blocks
 Free space list then has entries containing addresses and counts

 Space Maps
o Used in ZFS
o Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory -> thousands of I/Os
o Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs
o Each metaslab has associated space map

 Uses counting algorithm
o But records to log file rather than file system

 Log of all block activity, in time order, in counting format
o Metaslab activity -> load space map into memory in balanced-tree structure, indexed by

offset
 Replay log into that structure
 Combine contiguous free blocks into single entry

Efficiency and Performance

 Efficiency dependent on:
o Disk allocation and directory algorithms
o Types of data kept in file’s directory entry
o Pre-allocation or as-needed allocation of metadata structures
o Fixed-size or varying-size data structures

 Performance
o Keeping data and metadata close together
o Buffer cache – separate section of main memory for frequently used blocks
o Synchronous writes sometimes requested by apps or needed by OS

 No buffering / caching – writes must hit disk before acknowledgement
 Asynchronous writes more common, buffer-able, faster

o Free-behind and read-ahead – techniques to optimize sequential access
o Reads frequently slower than writes

Page Cache

 A page cache caches pages rather than disk blocks using virtual memory techniques and
addresses

 Memory-mapped I/O uses a page cache
 Routine I/O through the file system uses the buffer (disk) cache
 This leads to the following figure

