
UNIT V FILE SYSTEMS

Implementing File-system: File-System Structure, File-System Implementation, Directory
Implementation, Allocation methods, Free-space management.

Case Study- Real Time operating system and Mobile operating system.

File-System - File Concept

 Contiguous logical address space
 Types:

o Data
 numeric
 character
 binary

o Program
 Contents defined by file’s creator

o Many types
 Consider text file, source file, executable file

File Attributes
 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing
 Time, date, and user identification – data for protection, security, and usage monitoring
 Information about files are kept in the directory structure, which is maintained on the disk
 Many variations, including extended file attributes such as file checksum
 Information kept in the directory structure

File Operations

 File is an abstract data type
 Create
 Write – at write pointer location
 Read – at read pointer location
 Reposition within file - seek
 Delete
 Truncate
 Open(Fi) – search the directory structure on disk for entry Fi, and move the content of entry to

memory
 Close (Fi) – move the content of entry Fi in memory to directory structure on disk

Open Files
 Several pieces of data are needed to manage open files:

o Open-file table: tracks open files
o File pointer: pointer to last read/write location, per process that has the file open
o File-open count: counter of number of times a file is open – to allow removal of data

from open-file table when last processes closes it

o Disk location of the file: cache of data access information
o Access rights: per-process access mode information

Open File Locking

 Provided by some operating systems and file systems
o Similar to reader-writer locks
o Shared lock similar to reader lock – several processes can acquire concurrently
o Exclusive lock similar to writer lock

 Mediates access to a file
 Mandatory or advisory:

o Mandatory – access is denied depending on locks held and requested
o Advisory – processes can find status of locks and decide what to do

File Types – Name, Extension

File Structure

 None - sequence of words, bytes
 Simple record structure

o Lines
o Fixed length
o Variable length

 Complex Structures
o Formatted document
o Relocatable load file

 Can simulate last two with first method by inserting appropriate control characters
 Who decides:

o Operating system
o Program

Sequential-access File

Access Methods

 Sequential Access
 read next
 write next
 reset
 no read after last write
 (rewrite)

 Direct Access – file is fixed length logical records
 read n
 write n
 position to n
 read next
 write next
 rewrite n
 n = relative block number

 Relative block numbers allow OS to decide where file should be placed
o See allocation problem in Ch 12

Simulation of Sequential Access on Direct-access File

Other Access Methods

 Can be built on top of base methods
 General involve creation of an index for the file
 Keep index in memory for fast determination of location of data to be operated on (consider UPC

code plus record of data about that item)
 If too large, index (in memory) of the index (on disk)
 IBM indexed sequential-access method (ISAM)

o Small master index, points to disk blocks of secondary index
o File kept sorted on a defined key
o All done by the OS

 VMS operating system provides index and relative files as another example (see next slide)
Example of Index and Relative Files

Directory Structure

 A collection of nodes containing information about all files

Both the directory structure and the files reside on disk

Disk Structure

 Disk can be subdivided into partitions
 Disks or partitions can be RAID protected against failure
 Disk or partition can be used raw – without a file system, or formatted with a file system
 Partitions also known as minidisks, slices
 Entity containing file system known as a volume
 Each volume containing file system also tracks that file system’s info in device directory or

volume table of contents
 As well as general-purpose file systems there are many special-purpose file systems,

frequently all within the same operating system or computer

A Typical File-system Organization

Types of File Systems

 We mostly talk of general-purpose file systems
 But systems frequently have may file systems, some general- and some special- purpose
 Consider Solaris has

o tmpfs – memory-based volatile FS for fast, temporary I/O
o objfs – interface into kernel memory to get kernel symbols for debugging
o ctfs – contract file system for managing daemons
o lofs – loopback file system allows one FS to be accessed in place of another
o procfs – kernel interface to process structures
o ufs, zfs – general purpose file systems

Operations Performed on Directory

 Search for a file
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

Directory Organization
 Efficiency – locating a file quickly
 Naming – convenient to users

o Two users can have same name for different files
o The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all Java programs, all games, …)
Single-Level Directory
 A single directory for all users

 Naming problem
 Grouping problem

Two-Level Directory

 Separate directory for each user

 Path name
 Can have the same file name for different user
 Efficient searching
 No grouping capability

Tree-Structured Directories

Efficient searching

 Grouping Capability
 Current directory (working directory)

o cd /spell/mail/prog
o type list

 Absolute or relative path name
 Creating a new file is done in current directory
 Delete a file

 rm <file-name>
 Creating a new subdirectory is done in current directory

 mkdir <dir-name>
 Example: if in current directory /mail
 mkdir count

Deleting “mail” deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

 Two different names (aliasing)
 If dict deletes list dangling pointer

o Solutions:
o Backpointers, so we can delete all pointers

Variable size records a problem
o Backpointers using a daisy chain organization
o Entry-hold-count solution

 New directory entry type
o Link – another name (pointer) to an existing file
o Resolve the link – follow pointer to locate the file

General Graph Directory

 How do we guarantee no cycles?

o Allow only links to file not subdirectories
o Garbage collection
o Every time a new link is added use a cycle detection algorithm to determine whether it is

OK

File System Mounting

 A file system must be mounted before it can be accessed

 A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a mount point

Mount Point

File Sharing

 Sharing of files on multi-user systems is desirable
 Sharing may be done through a protection scheme
 On distributed systems, files may be shared across a network
 Network File System (NFS) is a common distributed file-sharing method
 If multi-user system

o User IDs identify users, allowing permissions and protections to be per-user
Group IDs allow users to be in groups, permitting group access rights

o Owner of a file / directory
o Group of a file / directory

File Sharing – Remote File Systems

 Uses networking to allow file system access between systems
o Manually via programs like FTP
o Automatically, seamlessly using distributed file systems
o Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems from servers
o Server can serve multiple clients
o Client and user-on-client identification is insecure or complicated
o NFS is standard UNIX client-server file sharing protocol
o CIFS is standard Windows protocol
o Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS,
Active Directory implement unified access to information needed for remote computing

File Sharing – Failure Modes

 All file systems have failure modes
o For example corruption of directory structures or other non-user data, called metadata

 Remote file systems add new failure modes, due to network failure, server failure
 Recovery from failure can involve state information about status of each remote request
 Stateless protocols such as NFS v3 include all information in each request, allowing easy

recovery but less security

File Sharing – Consistency Semantic

 Specify how multiple users are to access a shared file simultaneously
o Similar to process synchronization algorithms

 Tend to be less complex due to disk I/O and network latency (for remote file
systems

o Andrew File System (AFS) implemented complex remote file sharing semantics
o Unix file system (UFS) implements:

 Writes to an open file visible immediately to other users of the same open file
 Sharing file pointer to allow multiple users to read and write concurrently

o AFS has session semantics
 Writes only visible to sessions starting after the file is closed

Protection
 File owner/creator should be able to control:

o what can be done
o by whom

 Types of access
o Read
o Write
o Execute
o Append
o Delete
o List

Access Lists and Groups

 Mode of access: read, write, execute
 Three classes of users on Unix / Linux

RWX
a) owner access 7 1 1 1
 RWX
b) group access 6 1 1 0

RWX
c) public access 1 1 0 0

 Ask manager to create a group (unique name), say G, and add some users to the group.
 For a particular file (say game) or subdirectory, define an appropriate access.

File System Implementation

File-System Structure

 File structure
o Logical storage unit
o Collection of related information

 File system resides on secondary storage (disks)

o Provided user interface to storage, mapping logical to physical
o Provides efficient and convenient access to disk by allowing data to be stored, located

retrieved easily
 Disk provides in-place rewrite and random access

o I/O transfers performed in blocks of sectors (usually 512 bytes)
 File control block – storage structure consisting of information about a file
 Device driver controls the physical device
 File system organized into layers

Layered File System

File System Layers

 Device drivers manage I/O devices at the I/O control layer
o Given commands like “read drive1, cylinder 72, track 2, sector 10, into memory location

1060” outputs low-level hardware specific commands to hardware controller
 Basic file system given command like “retrieve block 123” translates to device driver
 Also manages memory buffers and caches (allocation, freeing, replacement)

o Buffers hold data in transit
o Caches hold frequently used data

 File organization module understands files, logical address, and physical blocks
o Translates logical block # to physical block #
o Manages free space, disk allocation

 Logical file system manages metadata information
o Translates file name into file number, file handle, location by maintaining file control

blocks (inodes in UNIX)
o Directory management
o Protection

 Layering useful for reducing complexity and redundancy, but adds overhead and can decrease
performanceTranslates file name into file number, file handle, location by maintaining file control
blocks (inodes in UNIX)

 Many file systems, sometimes many within an operating system
o Each with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS; Windows has

FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray, Linux has more than 40 types,
with extended file system ext2 and ext3 leading; plus distributed file systems, etc.)

File-System Implementation

 We have system calls at the API level, but how do we implement their functions?
o On-disk and in-memory structures

 Boot control block contains info needed by system to boot OS from that volume
o Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table) contains volume details
o Total # of blocks, # of free blocks, block size, free block pointers or array

 Directory structure organizes the files
o Names and inode numbers, master file table

 Per-file File Control Block (FCB) contains many details about the file
o inode number, permissions, size, dates
o NFTS stores into in master file table using relational DB structures

In-Memory File System Structures

 Mount table storing file system mounts, mount points, file system types
 The following figure illustrates the necessary file system structures provided by the operating

systems

 Figure 12-3(a) refers to opening a file Figure 12-3(b) refers to reading a file
 Plus buffers hold data blocks from secondary storage
 Open returns a file handle for subsequent use
 Data from read eventually copied to specified user process memory address

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or raw – just a sequence of blocks
with no file system

 Boot block can point to boot volume or boot loader set of blocks that contain enough code to
know how to load the kernel from the file system

o Or a boot management program for multi-os booting
 Root partition contains the OS, other partitions can hold other Oses, other file systems, or be raw

o Mounted at boot time
o Other partitions can mount automatically or manually

 At mount time, file system consistency checked
o Is all metadata correct?

 If not, fix it, try again
 If yes, add to mount table, allow access

Virtual File Systems
 Virtual File Systems (VFS) on Unix provide an object-oriented way of implementing file

systems
 VFS allows the same system call interface (the API) to be used for different types of file systems

o Separates file-system generic operations from implementation details
o Implementation can be one of many file systems types, or network file system

 Implements vnodes which hold inodes or network file details
o Then dispatches operation to appropriate file system implementation routines

 The API is to the VFS interface, rather than any specific type of file system

Virtual File System Implementation

 For example, Linux has four object types:
o inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be implemented
o Every object has a pointer to a function table

 Function table has addresses of routines to implement that function on that object
 For example:

• int open(. . .)—Open a file
• int close(. . .)—Close an already-open file
• ssize t read(. . .)—Read from a file
• ssize t write(. . .)—Write to a file
• int mmap(. . .)—Memory-map a file

Directory Implementation

 Linear list of file names with pointer to the data blocks
o Simple to program
o Time-consuming to execute

 Linear search time
 Could keep ordered alphabetically via linked list or use B+ tree

 Hash Table – linear list with hash data structure
o Decreases directory search time
o Collisions – situations where two file names hash to the same location
o Only good if entries are fixed size, or use chained-overflow method

Allocation Methods – Contiguous
 An allocation method refers to how disk blocks are allocated for files:
 Contiguous allocation – each file occupies set of contiguous blocks

o Best performance in most cases
o Simple – only starting location (block #) and length (number of blocks) are required
o Problems include finding space for file, knowing file size, external fragmentation, need for

compaction off-line (downtime) or on-line

1. Contiguous Allocation
n Mapping from logical to physical

n Block to be accessed = Q + starting address

Displacement into block = R

2. Extent-Based Systems
 Many newer file systems (i.e., Veritas File System) use a modified contiguous allocation scheme
 Extent-based file systems allocate disk blocks in extents
 An extent is a contiguous block of disks

o Extents are allocated for file allocation
o A file consists of one or more extents
o

3.Allocation Methods – Linked
 Linked allocation – each file a linked list of blocks

o File ends at nil pointer
o No external fragmentation
o Each block contains pointer to next block
o No compaction, external fragmentation
o Free space management system called when new block needed
o Improve efficiency by clustering blocks into groups but increases internal fragmentation
o Reliability can be a problem
o Locating a block can take many I/Os and disk seeks

 FAT (File Allocation Table) variation
o Beginning of volume has table, indexed by block number
o Much like a linked list, but faster on disk and cacheable
o New block allocation simple

Linked Allocation
 Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk

Mapping

Block to be accessed is the Qth block in the linked chain of blocks representing the file.
Displacement into block = R + 1
Linked Allocation

File-Allocation Table

4.Allocation Methods – Indexed
o Each file has its own index block(s) of pointers to its data blocks

 Logical view

index table

Example of Indexed Allocation

 Need index table
 Random access
 Dynamic access without external fragmentation, but have overhead of index block
 Mapping from logical to physical in a file of maximum size of 256K bytes and block size of 512

bytes. We need only 1 block for index table

Q = displacement into index table
R = displacement into block

 Mapping from logical to physical in a file of unbounded length (block size of 512 words)
 Linked scheme – Link blocks of index table (no limit on size)

Q1 = block of index table
R1 is used as follows:

Q2 = displacement into block of index table
R2 displacement into block of file:

 Two-level index (4K blocks could store 1,024 four-byte pointers in outer
index -> 1,048,567 data blocks and file size of up to 4GB)

Q1 = displacement into outer-index
R1 is used as follows:

Q2 = displacement into block of index table
R2 displacement into block of file:

Combined Scheme: UNIX UFS

4K bytes per block, 32-bit addresses

More index blocks than can be addressed with 32-bit file pointer

Performance

 Best method depends on file access type
o Contiguous great for sequential and random

 Linked good for sequential, not random
 Declare access type at creation -> select either contiguous or linked
 Indexed more complex

o Single block access could require 2 index block reads then data block read
o Clustering can help improve throughput, reduce CPU overhead

 Adding instructions to the execution path to save one disk I/O is reasonable
o Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 MIPS

 http://en.wikipedia.org/wiki/Instructions_per_second
o Typical disk drive at 250 I/Os per second

 159,000 MIPS / 250 = 630 million instructions during one disk I/O
o Fast SSD drives provide 60,000 IOPS

 159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/O

Free-Space Management
 File system maintains free-space list to track available blocks/clusters

o (Using term “block” for simplicity)
 Bit vector or bit map (n blocks)

Block number calculation
(number of bits per word) * (number of 0-value words) + offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

 Bit map requires extra space
o Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 32MB)
if clusters of 4 blocks -> 8MB of memory

 Easy to get contiguous files
Linked Free Space List on Disk

 Linked list (free list)
o Cannot get contiguous space easily
o No waste of space
o No need to traverse the entire list (if # free blocks recorded)

 Grouping
o Modify linked list to store address of next n-1 free blocks in first free block, plus a pointer

to next block that contains free-block-pointers (like this one)
 Counting

o Because space is frequently contiguously used and freed, with contiguous-allocation
allocation, extents, or clustering
 Keep address of first free block and count of following free blocks
 Free space list then has entries containing addresses and counts

 Space Maps
o Used in ZFS
o Consider meta-data I/O on very large file systems

 Full data structures like bit maps couldn’t fit in memory -> thousands of I/Os
o Divides device space into metaslab units and manages metaslabs

 Given volume can contain hundreds of metaslabs
o Each metaslab has associated space map

 Uses counting algorithm
o But records to log file rather than file system

 Log of all block activity, in time order, in counting format
o Metaslab activity -> load space map into memory in balanced-tree structure, indexed by

offset
 Replay log into that structure
 Combine contiguous free blocks into single entry

Efficiency and Performance

 Efficiency dependent on:
o Disk allocation and directory algorithms
o Types of data kept in file’s directory entry
o Pre-allocation or as-needed allocation of metadata structures
o Fixed-size or varying-size data structures

 Performance
o Keeping data and metadata close together
o Buffer cache – separate section of main memory for frequently used blocks
o Synchronous writes sometimes requested by apps or needed by OS

 No buffering / caching – writes must hit disk before acknowledgement
 Asynchronous writes more common, buffer-able, faster

o Free-behind and read-ahead – techniques to optimize sequential access
o Reads frequently slower than writes

Page Cache

 A page cache caches pages rather than disk blocks using virtual memory techniques and
addresses

 Memory-mapped I/O uses a page cache
 Routine I/O through the file system uses the buffer (disk) cache
 This leads to the following figure

