UNIT V

FILE SYSTEMS

Implementing File-system: File-System Structure, File-System Implementation, Directory
Implementation, Allocation methods, Free-space management.

Case Study- Real Time operating system and Mobile operating system.

File-System - File Concept
e Contiguous logical address space

e Types:
o Data
= numeric
= character
= binary
o Program

e Contents defined by file’s creator

o0 Many types
= Consider text file, source file, executable file

File Attributes

Name — only information kept in human-readable form

Identifier — unique tag (number) identifies file within file system

Type — needed for systems that support different types

Location — pointer to file location on device

Size — current file size

Protection — controls who can do reading, writing, executing

Time, date, and user identification — data for protection, security, and usage monitoring
Information about files are kept in the directory structure, which is maintained on the disk
Many variations, including extended file attributes such as file checksum

Information kept in the directory structure

File Operations

File is an abstract data type

Create

Write — at write pointer location

Read - at read pointer location

Reposition within file - seek

Delete

Truncate

Open(F;) — search the directory structure on disk for entry F;, and move the content of entry to
memory

Close (Fi) — move the content of entry F; in memory to directory structure on disk

Open Files
e Several pieces of data are needed to manage open files:

0 Open-file table: tracks open files

o File pointer: pointer to last read/write location, per process that has the file open

o0 File-open count: counter of number of times a file is open — to allow removal of data
from open-file table when last processes closes it

o Disk location of the file: cache of data access information
0 Access rights: per-process access mode information

Open File Locking
e Provided by some operating systems and file systems
o Similar to reader-writer locks
o0 Shared lock similar to reader lock — several processes can acquire concurrently
o0 Exclusive lock similar to writer lock
e Mediates access to a file
e Mandatory or advisory:
0 Mandatory — access is denied depending on locks held and requested
0 Advisory — processes can find status of locks and decide what to do
File Types — Name, Extension

file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object obj, o compiled, machine
language, not linked
source code C, CC, java, pas, | source code in various
asm, a languages
batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents
word processor| wp, tex, rtf, various word-processor
doc formats
library lib, a, so, dll libraries of routines for
programmers
print or view ps, pdf, jpg ASCII or binary file in a
format for printing or
viewing
archive arc, zip, tar related files grouped into

one file, sometimes com-
pressed, for archiving

or storage
multimedia mpeg, mov, rm, | binary file containing
mp3, avi audio or A/V information

File Structure
¢ None - sequence of words, bytes
e Simple record structure
o Lines
0 Fixed length
0 Variable length
e Complex Structures
o Formatted document
0 Relocatable load file
e Can simulate last two with first method by inserting appropriate control characters
e Who decides:
0 Operating system
o Program

Sequential-access File

L current position
beginning P end

e rewind :‘: .
read or write =)

Access Methods
e Sequential Access

read next

write next

reset

no read after last write
(rewrite)

e Direct Access — file is fixed length logical records

read n

write n

position to n
read next
write next

rewrite n

n = relative block number

¢ Relative block numbers allow OS to decide where file should be placed
o0 See allocation problem in Ch 12

Simulation of Sequential Access on Direct-access File

sequential access implementation for direct access
reset cp = O;
read next read cp;
ch = cp I l;
write next write cp;
cp=cp—+ 1;
Other Access Methods

e Can be built on top of base methods
e General involve creation of an index for the file
e Keep index in memory for fast determination of location of data to be operated on (consider UPC
code plus record of data about that item)
e Iftoo large, index (in memory) of the index (on disk)
¢ IBM indexed sequential-access method (ISAM)
o Small master index, points to disk blocks of secondary index
o0 File kept sorted on a defined key
o All done by the OS
e VVMS operating system provides index and relative files as another example (see next slide)
Example of Index and Relative Files

logical record

last name number

Adams
Arthur
Asher smith, john [social-security| age
Smith Z
index file relative file

Directory Structure

A collection of nodes containing information about all files

DO DO D S

Directory

Fa4
F2l (o5

Files

Both the directory structure and the files reside on disk

Disk Structure

Disk can be subdivided into partitions

Disks or partitions can be RAID protected against failure

Disk or partition can be used raw — without a file system, or formatted with a file system
Partitions also known as minidisks, slices

Entity containing file system known as a volume

Each volume containing file system also tracks that file system’s info in device directory or
volume table of contents

As well as general-purpose file systems there are many special-purpose file systems,
frequently all within the same operating system or computer

A Typical File-system Organization

directory directory

partition A < Sileses = disk 2

~ disk 1

4

directory

AN

partition C <

files

iti <
partition B STl

- disk 3

Types of File Systems
e We mostly talk of general-purpose file systems
e But systems frequently have may file systems, some general- and some special- purpose
e Consider Solaris has
o tmpfs — memory-based volatile FS for fast, temporary 1/0
objfs — interface into kernel memory to get kernel symbols for debugging
ctfs — contract file system for managing daemons
lofs — loopback file system allows one FS to be accessed in place of another
procfs — kernel interface to process structures
ufs, zfs — general purpose file systems

O O0OO0OO0Oo

Operations Performed on Directory
e Search for a file

Create a file

Delete a file

List a directory

Rename a file

Traverse the file system

Directory Organization
e Efficiency — locating a file quickly
¢ Naming - convenient to users
0 Two users can have same name for different files
0 The same file can have several different names
e Grouping - logical grouping of files by properties, (e.g., all Java programs, all games, ...)
Single-Level Directory
e Asingle directory for all users

directory cat !] bo E] a !ﬂ test; data H man’ cont hex recor

b &

e Naming problem
e Grouping problem

Two-Level Directory
e Separate directory for each user

user file
tory

master file
directory

’ user 1 ‘ user2| user3‘ user4‘

h 4

test

data

test

data

VLU LD

Path name

Can have the same file name for different user

Efficient searching

No grouping capability

Tree-Structured Directories

root | spell | bin |pmgrams|
w
stat mail dist find reo.rder e maif
prog | copy reorder count

\\O - b gg}

spell

& o

Efficient searching
Grouping Capability
Current directory (working directory)

o cd /spell/mail/prog

0 type list

e Absolute or relative path name
e Creating a new file is done in current directory
e Delete afile
= rm <file-name>
e Creating a new subdirectory is done in current directory

= mkdir <dir-name>

Example: if in current directory /mail

mkdir count

prog | copy | prt |exp| count

Deleting “mail” = deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

root dict spefl
fist alf w count count | words fist

S =

w

» fist rade W

S D O

e Two different names (aliasing)
o Ifdict deletes list = dangling pointer
0 Solutions:
0 Backpointers, so we can delete all pointers
Variable size records a problem
o0 Backpointers using a daisy chain organization
o0 Entry-hold-count solution
e New directory entry type
0 Link — another name (pointer) to an existing file

0 Resolve the link — follow pointer to locate the file
General Graph Directory

root avi tc firm
text | mail | count| book book | mail |\unhex| hyp
|
avi | count unhex| hex

S o
e How do we guarantee no cycles?

o0 Allow only links to file not subdirectories
0 Garbage collection

o0 Every time anew link is added use a cycle detection algorithm to determine whether it is
OK
File System Mounting
o A file system must be mounted before it can be accessed

e A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a mount point
/

sue

_ ()
Mount Point
b
users
sue jane

A
y === N
prog

ﬂ

File Sharing
Sharing of files on multi-user systems is desirable
Sharing may be done through a protection scheme
On distributed systems, files may be shared across a network
Network File System (NFS) is a common distributed file-sharing method
If multi-user system
0 User IDs identify users, allowing permissions and protections to be per-user
Group IDs allow users to be in groups, permitting group access rights
o0 Owner of a file / directory
o Group of a file / directory

File Sharing — Remote File Systems

e Uses networking to allow file system access between systems
o0 Manually via programs like FTP
o Automatically, seamlessly using distributed file systems
0 Semi automatically via the world wide web

o Client-server model allows clients to mount remote file systems from servers
0 Server can serve multiple clients
o Client and user-on-client identification is insecure or complicated
0 NFSis standard UNIX client-server file sharing protocol
o CIFS is standard Windows protocol
o0 Standard operating system file calls are translated into remote calls

e Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS,

Active Directory implement unified access to information needed for remote computing

File Sharing — Failure Modes

All file systems have failure modes

o For example corruption of directory structures or other non-user data, called metadata
Remote file systems add new failure modes, due to network failure, server failure
Recovery from failure can involve state information about status of each remote request
Stateless protocols such as NFS v3 include all information in each request, allowing easy
recovery but less security

File Sharing — Consistency Semantic

Specify how multiple users are to access a shared file simultaneously

o Similar to process synchronization algorithms

= Tend to be less complex due to disk I/O and network latency (for remote file
systems

0 Andrew File System (AFS) implemented complex remote file sharing semantics

o0 Unix file system (UFS) implements:
= Writes to an open file visible immediately to other users of the same open file
= Sharing file pointer to allow multiple users to read and write concurrently

0 AFS has session semantics
= Writes only visible to sessions starting after the file is closed

Protection

File owner/creator should be able to control:
o0 what can be done
0 by whom

Types of access
0 Read

Write

Execute

Append

Delete

List

O O0O0OO0O0o

Access Lists and Groups

Mode of access: read, write, execute
Three classes of users on Unix / Linux

RWX owner dgroup public
a) owner access 7 = 111

RWX chmod 761 game
b) group access 6 = 110

RWX
¢) public access 1 = 100

Ask manager to create a group (unique name), say G, and add some users to the group.
For a particular file (say game) or subdirectory, define an appropriate access.

File System Implementation

File-System Structure

File structure
o Logical storage unit
o0 Collection of related information
File system resides on secondary storage (disks)

o0 Provided user interface to storage, mapping logical to physical
o0 Provides efficient and convenient access to disk by allowing data to be stored, located
retrieved easily
e Disk provides in-place rewrite and random access
o 1/0 transfers performed in blocks of sectors (usually 512 bytes)
e File control block — storage structure consisting of information about a file
e Device driver controls the physical device
e File system organized into layers

Layered File System

application programs

logical file system

U

file-organization module

4

basic file system

U

1/O control

U

devices
File System Layers
e Device drivers manage 1/0 devices at the 1/O control layer
o Given commands like “read drivel, cylinder 72, track 2, sector 10, into memory location
1060” outputs low-level hardware specific commands to hardware controller
e Basic file system given command like “retrieve block 123 translates to device driver
e Also manages memory buffers and caches (allocation, freeing, replacement)
o Buffers hold data in transit
o Caches hold frequently used data
e File organization module understands files, logical address, and physical blocks
0 Translates logical block # to physical block #
0 Manages free space, disk allocation
e Logical file system manages metadata information
0 Translates file name into file number, file handle, location by maintaining file control
blocks (inodes in UNIX)
o Directory management
0 Protection
e Layering useful for reducing complexity and redundancy, but adds overhead and can decrease
performanceTranslates file name into file number, file handle, location by maintaining file control
blocks (inodes in UNIX)
e Many file systems, sometimes many within an operating system
o Each with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS; Windows has
FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray, Linux has more than 40 types,
with extended file system ext2 and ext3 leading; plus distributed file systems, etc.)

File-System Implementation

e We have system calls at the API level, but how do we implement their functions?
0 On-disk and in-memory structures
e Boot control block contains info needed by system to boot OS from that volume
0 Needed if volume contains OS, usually first block of volume
¢ Volume control block (superblock, master file table) contains volume details
o Total # of blocks, # of free blocks, block size, free block pointers or array
e Directory structure organizes the files
0 Names and inode numbers, master file table
o Per-file File Control Block (FCB) contains many details about the file
0 inode number, permissions, size, dates
0 NFTS stores into in master file table using relational DB structures

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

In-Memory File System Structures
e Mount table storing file system mounts, mount points, file system types
e The following figure illustrates the necessary file system structures provided by the operating

systems
directory structure
open (file name) - {]
directory structure T el bloct
user space kernel memory secondary storage

(a)

N 1 T]
T 1 [1
| | data blocks
read (index) ‘\—\l:]
per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage

(b)
Figure 12-3(a) refers to opening a file Figure 12-3(b) refers to reading a file
Plus buffers hold data blocks from secondary storage

Open returns a file handle for subsequent use

Data from read eventually copied to specified user process memory address

Partitions and Mounting
e Partition can be a volume containing a file system (“cooked”) or raw — just a sequence of blocks
with no file system

e Boot block can point to boot volume or boot loader set of blocks that contain enough code to
know how to load the kernel from the file system
o Oraboot management program for multi-os booting
e Root partition contains the OS, other partitions can hold other Oses, other file systems, or be raw
0 Mounted at boot time
0 Other partitions can mount automatically or manually
e At mount time, file system consistency checked
o s all metadata correct?
= Ifnot, fix it, try again
= If yes, add to mount table, allow access
Virtual File Systems
e Virtual File Systems (VFS) on Unix provide an object-oriented way of implementing file
systems
e VFS allows the same system call interface (the API) to be used for different types of file systems
0 Separates file-system generic operations from implementation details
o Implementation can be one of many file systems types, or network file system
= Implements vnodes which hold inodes or network file details
0 Then dispatches operation to appropriate file system implementation routines
e The APl is to the VFS interface, rather than any specific type of file system

file-system interface

Y

VFS interface

y h 4 A

y
local file system local file system remote file system
type 1 type 2 type 1

h 4 A 4

- v
——
) network

Virtual File System Implementation
e For example, Linux has four object types:
0 inode, file, superblock, dentry
e VFS defines set of operations on the objects that must be implemented
0 Every object has a pointer to a function table
= Function table has addresses of routines to implement that function on that object
= For example:
* intopen(...—Open afile
» intclose(...—Close an already-open file
e ssizetread(...—Read from a file
* ssize twrite(...)—Write to a file
* intmmap(...)—Memory-map a file

Directory Implementation
e Linear list of file names with pointer to the data blocks
o Simple to program
0 Time-consuming to execute

= Linear search time
= Could keep ordered alphabetically via linked list or use B+ tree
e Hash Table — linear list with hash data structure
0 Decreases directory search time
o Collisions — situations where two file names hash to the same location
o Only good if entries are fixed size, or use chained-overflow method
Allocation Methods — Contiguous
e An allocation method refers to how disk blocks are allocated for files:
e Contiguous allocation — each file occupies set of contiguous blocks
0 Best performance in most cases
o Simple - only starting location (block #) and length (number of blocks) are required
o0 Problems include finding space for file, knowing file size, external fragmentation, need for
compaction off-line (downtime) or on-line

1. Contiguous Allocation

n Mapping from logical to physical e e directory
_// -
Q i file start length
/’/ o] 1O 2 31 count 0 2
f
LA/512 401 501 60 701 mal 10 o
™~ 8] o[1101111 Bet 4
e f 6 2
R 121301401501
n Block to be accessed = Q + starting address 1611711811901
Displacement into block = R sol 21T CJoal]
24[]25[J26[127[]
list
28[I29Ij§0]]
Extent-Based Systems gl

e Many newer file systems (i.e., Veritas File System) use a modified contiguous allocation scheme
e Extent-based file systems allocate disk blocks in extents
e An extent is a contiguous block of disks
o0 Extents are allocated for file allocation
o A file consists of one or more extents
o]
3.Allocation Methods — Linked
e Linked allocation — each file a linked list of blocks
o File ends at nil pointer
No external fragmentation
Each block contains pointer to next block
No compaction, external fragmentation
Free space management system called when new block needed
Improve efficiency by clustering blocks into groups but increases internal fragmentation
Reliability can be a problem
0 Locating a block can take many 1/0s and disk seeks
e FAT (File Allocation Table) variation
0 Beginning of volume has table, indexed by block number
0 Much like a linked list, but faster on disk and cacheable
o0 New block allocation simple
Linked Allocation
e Eachfile is alinked list of disk blocks: blocks may be scattered anywhere on the disk

O O0O0OO0O0O0

block == pointer

Mapping Q
LA/SB11
\R
Block to be accessed is the Qth block in the linked chain of blocks representing the file.

Displacement into block =R + 1
Linked Allocation

e directory
[= file start end
jeep 9 25
o[] 1 2] s[]
a1 s(1 e[7]
s8[] palHo[2]11[]
1213 114f 115
16 [17[18 _]19[]
20[21 2|:|23IZI
24[25126 127 []
28[]29[130[|31]
N
File-Allocation Table
directory entry
[test I eee [217 —
name start block o
> 217 618
339 <
618 339 =
no. of disk blocks —1
FAT
4. Allocation Methods — Indexed
o] Each file has its own index block(s) of pointers to its data blocks
. Logical view]
]
SN
%D

index table

Example of Indexed Allocation

e . directory
] file index block
o] 1l 2] s leep U

4 [F5] | Gégbj[]

24 |25 2 127]
28 29[130131

v
o Need index table
o Random access
o Dynamic access without external fragmentation, but have overhead of index block
o Mapping from logical to physical in a file of maximum size of 256K bytes and block size of 512
bytes. We need only 1 block for index table
Q
Q = displacement into index table LA/B12
R = displacement into block \R
o Mapping from logical to physical in a file of unbounded length (block size of 512 words)
o Linked scheme — Link blocks of index table (no limit on size)
Q;
LA/ (512 x 511)<
Q1 = block of index table R4
R1 is used as follows:
xx’xﬁcag
R,/512
| | g,
Q2 = displacement into block of index table
R2 displacement into block of file:
o Two-level index (4K blocks could store 1,024 four-byte pointers in outer
index -> 1,048,567 data blocks and file size of up to 4GB)
Q
P
LA/ (512 x 512)\
/ “

Q1 = displacement into outer-index R./512
R1 is used as follows: ! T R,

Q2 = displacement into block of index table
R2 displacement into block of file:

L T—

Combined Scheme: UN

4K bytes per block, 32-bit addresses

mode

owners (2)

timestamps (3)

size block count

direct blocks

single indirect —

double indirect

triple indirect

B N B
L — | \\
\\
outer-index
iNndex table file
IXUFS
*
e — o data]
2=+——{ data | = =] [daa]
2 dawa]
| =——{ data |

More index blocks than can be addressed with 32-bit file pointer

Performance
[]

Best method depends on file access type

o Contiguous great for sequential and random

Indexed more co

mplex

Linked good for sequential, not random
Declare access type at creation -> select either contiguous or linked

o Single block access could require 2 index block reads then data block read
o Clustering can help improve throughput, reduce CPU overhead

(0]

(0]

(0]

Adding instructions to the execution path to save one disk I/O is reasonable

Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 MIPS
http://en.wikipedia.org/wiki/Instructions_per_second

Typical disk drive at 250 I/Os per second
159,000 MIPS / 250 = 630 million instructions during one disk 1/O
Fast SSD drives provide 60,000 IOPS
159,000 MIPS / 60,000 = 2.65 millions instructions during one disk 1/0

Free-Space Management
o File system maintains free-space list to track available blocks/clusters
0 (Using term “block” for simplicity)
o Bit vector or bit map (n blocks)

o 1 2 -1

g 1 == block[i] free

bit[i]= -
| O = block[i] occupied

Block number calculation
(number of bits per word) * (number of 0-value words) + offset of first 1 bit
CPUs have instructions to return offset within word of first “1” bit

o Bit map requires extra space
o Example:
block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 32MB)
if clusters of 4 blocks -> 8MB of memory

o Easy to get contiguous files
Linked Free Space List on Disk
o Linked list (free list)

o Cannot get contiguous space easily
0 No waste of space
0 No need to traverse the entire list (if # free blocks recorded)

free-space list head

28 J29[Jao[I831[]
v

J Grouping
0 Modify linked list to store address of next n-1 free blocks in first free block, plus a pointer
to next block that contains free-block-pointers (like this one)
o Counting

0 Because space is frequently contiguously used and freed, with contiguous-allocation
allocation, extents, or clustering
= Keep address of first free block and count of following free blocks
= Free space list then has entries containing addresses and counts
o Space Maps
0 Usedin ZFS
o0 Consider meta-data I/O on very large file systems
= Full data structures like bit maps couldn’t fit in memory -> thousands of 1/Os
o0 Divides device space into metaslab units and manages metaslabs
= Given volume can contain hundreds of metaslabs
0 Each metaslab has associated space map
= Uses counting algorithm
0 But records to log file rather than file system
= Logofall block activity, in time order, in counting format
0 Metaslab activity -> load space map into memory in balanced-tree structure, indexed by
offset
= Replay log into that structure
= Combine contiguous free blocks into single entry

Efficiency and Performance
o Efficiency dependent on:
o Disk allocation and directory algorithms
0 Types of data kept in file’s directory entry
0 Pre-allocation or as-needed allocation of metadata structures
o Fixed-size or varying-size data structures
o Performance
o0 Keeping data and metadata close together
o Buffer cache — separate section of main memory for frequently used blocks
0 Synchronous writes sometimes requested by apps or needed by OS
= No buffering / caching — writes must hit disk before acknowledgement
= Asynchronous writes more common, buffer-able, faster
0 Free-behind and read-ahead — techniques to optimize sequential access
0 Reads frequently slower than writes

Page Cache
e A page cache caches pages rather than disk blocks using virtual memory techniques and
addresses
e Memory-mapped I/O uses a page cache
e Routine 1/0 through the file system uses the buffer (disk) cache
e This leads to the following figure

