
UNIT

FILE SYSTEMS

UNIT V

FILE SYSTEMS

FILE SYSTEMS

Implementing File Systems
• File-System Structure

• File-System Implementation

• Directory Implementation

• Allocation Methods

• Free-Space Management

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

FILE SYSTEMS

Case Study
• Real Time operating systems

• Mobile Operating systems

Directory Implementation

• Linear list of file names with pointer to the data blocks

• Simple to program

• Time-consuming to execute
• Linear search time
• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure

• Decreases directory search time

• Collisions – situations where two file names hash to the same location

• Only good if entries are fixed size, or use chained

Directory Implementation

of file names with pointer to the data blocks

Could keep ordered alphabetically via linked list or use B+ tree

linear list with hash data structure

situations where two file names hash to the same location

Only good if entries are fixed size, or use chained-overflow method

Allocation Methods

• An allocation method refers to how disk blocks are allocated for files:

• Contiguous allocation – each file occupies set of contiguous blocks

• Best performance in most cases

• Simple – only starting location (block #) and length (number of blocks)

are required

• Problems include finding space for file, knowing file size, external

fragmentation, need for compaction off

Allocation Methods - Contiguous

An allocation method refers to how disk blocks are allocated for files:

each file occupies set of contiguous blocks

only starting location (block #) and length (number of blocks)

Problems include finding space for file, knowing file size, external

compaction off-line (downtime) or on-line

Contiguous Allocation

• Mapping from logical to physical

LA/512

Q

R

Block to be accessed = Q + starting address
Displacement into block = R

Contiguous Allocation

Extent-Based Systems

• Many newer file systems (i.e., Veritas File System) use a modified

contiguous allocation scheme

• Extent-based file systems allocate disk blocks in

• An extent is a contiguous block of disks

• Extents are allocated for file allocation

• A file consists of one or more extents

Based Systems

File System) use a modified

based file systems allocate disk blocks in extents

is a contiguous block of disks

Extents are allocated for file allocation

A file consists of one or more extents

Allocation Methods
• Linked allocation – each file a linked list of blocks

• File ends at nil pointer

• No external fragmentation , No compaction

• Each block contains pointer to next block

• Free space management system called when new block needed

• Improve efficiency by clustering blocks into groups but increases internal

fragmentation

• Reliability can be a problem

• Locating a block can take many I/Os and disk seeks

Allocation Methods - Linked
each file a linked list of blocks

No compaction

block contains pointer to next block

space management system called when new block needed

Improve efficiency by clustering blocks into groups but increases internal

Locating a block can take many I/Os and disk seeks

Allocation Methods

• FAT (File Allocation Table) variation

• Beginning of volume has table, indexed by block number

• Much like a linked list, but faster on disk and cacheable

• New block allocation simple

Allocation Methods – Linked (Cont.)

Beginning of volume has table, indexed by block number

Much like a linked list, but faster on disk and cacheable

Linked Allocation

• Each file is a linked list of disk blocks: blocks may be scattered anywhere on the
disk

 Mapping

Block to be accessed is the Qth block in the linked chain of blocks representing the file.

Displacement into block = R + 1

LA/511
Q

R

Linked Allocation

Each file is a linked list of disk blocks: blocks may be scattered anywhere on the

pointerblock =

block in the linked chain of blocks representing the file.

Linked AllocationLinked Allocation

File-Allocation TableAllocation Table

Allocation Methods

• Indexed allocation
• Each file has its own index block(s) of pointers to its data blocks

• Logical view

index ta

Allocation Methods - Indexed

(s) of pointers to its data blocks

able

Example of Indexed AllocationExample of Indexed Allocation

Indexed Allocation (Cont.)

• Need index table

• Random access

• Dynamic access without external fragmentation, but have overhead of index

block

• Mapping from logical to physical in a file of maximum size of 256K bytes and

block size of 512 bytes. We need only 1 block for index table

Q = displacement into index table
R = displacement into block

Indexed Allocation (Cont.)

Dynamic access without external fragmentation, but have overhead of index

Mapping from logical to physical in a file of maximum size of 256K bytes and

block size of 512 bytes. We need only 1 block for index table

LA/512
Q

R

Indexed Allocation

• Mapping from logical to physical in a file of unbounded length (block size of 512
words)

• Linked scheme – Link blocks of index table (no limit on size)

LA / (512 x 511)Q1 = block of index table
R1 is used as follows:

Q2 = displacement into block of index table
R2 displacement into block of file:

Indexed Allocation – Mapping (Cont.)

Mapping from logical to physical in a file of unbounded length (block size of 512

Link blocks of index table (no limit on size)

LA / (512 x 511)
Q1

R1

R1 / 512
Q2

R2

= displacement into block of index table

Indexed Allocation
• Two-level index (4K blocks could store 1,024 four

1,048,567 data blocks and file size of up to 4GB)

LA / (512 x 512)

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512

Q2 = displacement into block of index table
R2 displacement into block of file:

Indexed Allocation – Mapping (Cont.)
level index (4K blocks could store 1,024 four-byte pointers in outer index ->

1,048,567 data blocks and file size of up to 4GB)

LA / (512 x 512)
Q1

R1

/ 512
Q2

R2

Indexed Allocation Indexed Allocation – Mapping (Cont.)

Combined Scheme: UNIX UFS

More index blocks than can be addressed with 32

4K bytes per block, 32-bit addresses

Combined Scheme: UNIX UFS

More index blocks than can be addressed with 32-bit file pointer

Performance
• Best method depends on file access type

• Contiguous great for sequential and random

• Linked good for sequential, not random

• Declare access type at creation -> select either contiguous or linked

• Indexed more complex

• Single block access could require 2 index block reads then data block

read

• Clustering can help improve throughput, reduce CPU overhead

Performance
Best method depends on file access type

Contiguous great for sequential and random

Linked good for sequential, not random

> select either contiguous or linked

Single block access could require 2 index block reads then data block

Clustering can help improve throughput, reduce CPU overhead

Performance (Cont.)

• Adding instructions to the execution path to save one disk I/O is reasonable

• Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 MIPS

• http://en.wikipedia.org/wiki/Instructions_per_second

• Typical disk drive at 250 I/Os per second

• 159,000 MIPS / 250 = 630 million instructions during one disk I/O

• Fast SSD drives provide 60,000 IOPS

• 159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/O

Performance (Cont.)

Adding instructions to the execution path to save one disk I/O is reasonable

Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 MIPS

http://en.wikipedia.org/wiki/Instructions_per_second

Typical disk drive at 250 I/Os per second

159,000 MIPS / 250 = 630 million instructions during one disk I/O

Fast SSD drives provide 60,000 IOPS

159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/O

Free-Space Management

• File system maintains free-space list to track available blocks/clusters

• (Using term “block” for simplicity)

• Bit vector or bit map (n blocks)
0 1

bit[i] =
Block number calculation

(number of bits per word) * (number of 0

CPUs have instructions to return offset within word of first

Space Management

to track available blocks/clusters

…
1 2 n-1





1  block[i] free

0  block[i] occupied

number of 0-value words) + offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

Free-Space Management (Cont.)
• Bit map requires extra space

• Example:
block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 32MB)
if clusters of 4 blocks -> 8MB of memory

• Easy to get contiguous files

Space Management (Cont.)

bytes (1 terabyte)
bits (or 32MB)

> 8MB of memory

Linked Free Space List on Disk

 Linked list (free list)

 Cannot get contiguous space

easily

 No waste of space

 No need to traverse the entire

list (if # free blocks recorded)

Linked Free Space List on Disk

Free-Space Management (Cont.)

• Grouping

• Modify linked list to store address of next

plus a pointer to next block that contains free

• Counting

• Because space is frequently contiguously used and freed, with contiguous

allocation allocation, extents, or clustering

• Keep address of first free block and count of following free blocks

• Free space list then has entries containing addresses and counts

Space Management (Cont.)

Modify linked list to store address of next n-1 free blocks in first free block,

plus a pointer to next block that contains free-block-pointers (like this one)

Because space is frequently contiguously used and freed, with contiguous-

allocation allocation, extents, or clustering

Keep address of first free block and count of following free blocks

Free space list then has entries containing addresses and counts

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

