
Solidity-Inheritance 

Inheritance is a way to extend functionality of a contract. Solidity supports both single 

as well as multiple inheritance. Following are the key highlighsts. 

 

A derived contract can access all non-private members including internal 

methods and state variables. But using this is not allowed. 

 

Function overriding is allowed provided function signature remains same. In 

case of difference of output parameters, compilation will fail. 

 

We can call a super contract's function using super keyword or using super 

contract name. 

 

In case of multiple inheritance, function call using super gives preference to 

most derived contract. 

 

Example 

pragma solidity ^0.5.0; 

 

contract C { 

   //private state variable 

   uint private data; 

    

   //public state variable 

   uint public info; 

 

   //constructor 

   constructor() public { 

      info = 10; 

   } 

   //private function 



   function increment(uint a) private pure returns(uint) { return a + 1; } 

    

   //public function 

   function updateData(uint a) public { data = a; } 

   function getData() public view returns(uint) { return data; } 

   function compute(uint a, uint b) internal pure returns (uint) { return a + 

b; }}//Derived Contract 

contract E is C { 

   uint private result; 

   C private c; 

   constructor() public { 

      c = new C(); 

   }   

   function getComputedResult() public {       

      result = compute(3, 5);  

   } 

   function getResult() public view returns(uint) { return result; } 

   function getData() public view returns(uint) { return c.info(); }} 

Run the above program using steps provided in Solidity First Application chapter. 

Run various method of Contracts. For E.getComputedResult() followed by 

E.getResult() shows − 

Output 

0: uint256: 8 

https://www.tutorialspoint.com/solidity/solidity_first_application.htm

	Example
	Output

