
What is Ethereum?

Ethereum is a blockchain-based computing platform that enables

developers to build and deploy decentralized applications—meaning not

run by a centralized authority. You can create a decentralized application

for which the participants of that particular application are the decision-

making authority.

Ethereum Features

 Ether: This is Ethereum’s cryptocurrency.

 Smart contracts: Ethereum allows the development and deployment

of these types of contracts.

 Ethereum Virtual Machine: Ethereum provides the underlying

technology—the architecture and the software—that understands smart

contracts and allows you to interact with it.

 Decentralized applications (Dapps): A decentralized application is

called a Dapp (also spelled DAPP, App, or DApp) for short. Ethereum

allows you to create consolidated applications, called decentralized

applications.

 Decentralized autonomous organizations (DAOs): Ethereum allows

you to create these for democratic decision-making.

These are Ethereum’s essential features. Before going deep into the

Ethereum tutorial, let’s discuss each of these features in more detail.

https://www.simplilearn.com/tutorials/blockchain-tutorial/what-is-blockchain
https://www.simplilearn.com/tutorials/blockchain-tutorial/what-is-cryptocurrency

1. Ether

Ether (ETH) is Ethereum’s cryptocurrency. It is the fuel that runs the

network. It is used to pay for the computational resources and the

transaction fees for any transaction executed on the Ethereum network.

Like Bitcoins, ether is a peer-to-peer currency. Apart from being used to

pay for transactions, ether is also used to buy gas, which is used to pay

for the computation of any transaction made on the Ethereum network.

Also, if you want to deploy a contract on Ethereum, you will need gas,

and you would have to pay for that gas in ether. So gas is the execution

fee paid by a user for running a transaction in Ethereum. Ether can be

utilized for building decentralized applications, building smart contracts,

and making regular peer-to-peer payments.

2. Smart Contracts

Smart contracts are revolutionizing how traditional contracts work, which

is why you need to use the tutorial to become more familiar with them. A

smart contract is a simple computer program that facilitates the exchange

of any asset between two parties. It could be money, shares, property, or

any other digital asset that you want to exchange. Anyone on the

Ethereum network can create these contracts. The contract consists

primarily of the terms and conditions mutually agreed on between the

parties (peers).

The smart contract’s primary feature is that once it is executed, it cannot

be altered, and any transaction done on top of a smart contract is

registered permanently—it is immutable. So even if you modify the smart

https://www.ethereum.org/beginners/
https://www.simplilearn.com/tutorials/blockchain-tutorial/what-is-smart-contract

contract in the future, the transactions correlated with the original

contract will not get altered; you cannot edit them.

The verification process for the smart contracts is carried out by

anonymous parties in the network without the need for a centralized

authority, and that’s what makes any smart contract execution on

Ethereum a decentralized execution.

The transfer of any asset or currency is done in a transparent and

trustworthy manner, and the identities of the two entities are secure on the

Ethereum network. Once the transaction is successfully done, the

accounts of the sender and receiver are updated accordingly, and in this

way, it generates trust between the parties.

Smart Contracts Vs. Traditional Contract Systems

In conventional contract systems, you sign an agreement, then you trust

and hire a third party for its execution. The problem is that in this type of

process, data tampering is possible. With smart contracts, the agreement

is coded in a program.

A centralized authority does not verify the result; it is confirmed by the

participants on the Ethereum blockchain-based network. Once a contract

is executed, the transaction is registered and cannot be altered or

tampered, so it removes the risk of any data manipulation or alteration.

Let’s take an example in which someone named Zack has given a

contract of $500 to someone named Elsa for developing his company’s

website. The developers code the agreement of the smart contract using

Ethereum’s programming language.

The smart contract has all the conditions (requirements) for building the

website. Once the code is written, it is uploaded and deployed on the

Ethereum Virtual Machine (EVM).

EVM is a runtime compiler to execute a smart contract. Once the code is

deployed on the EVM, every participant on the network has a copy of the

contract. When Elsa submits the work on Ethereum for evaluation, each

node on the Ethereum network will evaluate and confirm whether the

result given by Elsa has been done as per the coding requirements.

Once the result is approved and verified, the contract worth $500 will be

self-executed, and the payment will be paid to Elsa in ether. Zack’s

account will be automatically debited, and Elsa will be credited with $500

in ether.

The Ethereum tutorial video includes a demo on the deployment of an

Ethereum smart contract.

Take a deep dive on Bitcoins, Hyperledger, Ethereum, and

Multichain Blockchain platforms with the Blockchain

Certification Training Course!

https://www.simplilearn.com/blockchain-certification-training-course
https://www.simplilearn.com/blockchain-certification-training-course

3. Ethereum Virtual Machine

EVM, as mentioned above in this Ethereum tutorial, is designed to

operate as a runtime environment for compiling and deploying Ethereum-

based smart contracts. EVM is the engine that understands the language

of smart contracts, which are written in the Solidity language for

Ethereum. EVM is operated in a sandbox environment—basically, you

can deploy your stand-alone environment, which can act as a testing and

development environment. You can then test your smart contract (use it)

“n” number of times, verify it, and once you are satisfied with the

performance and the functionality of the smart contract, you can deploy it

on the Ethereum main network.

Any programming language in the smart contract is compiled into the

bytecode, which the EVM understands. This bytecode can be read and

executed using the EVM. Solidity is one of the most popular languages

for writing a smart contract. Once you write your smart contract in

Solidity, that contract gets converted into the bytecode and gets deployed

on the EVM, thereby guaranteeing security from cyberattacks.

a) How Does EVM Work?

Suppose person A wants to pay person B 10 ethers. The transaction will

be sent to the EVM using a smart contract for a fund transfer from A to B.

To validate the transaction; the Ethereum network will perform the proof-

of-work consensus algorithm.

The miner nodes on Ethereum will validate this transaction—whether the

identity of A exists or not, and if A has the requested amount to transfer.

Once the transaction is confirmed, the ether will be debited from A’s

wallet and will be credited to B’s wallet, and during this process, the

miners will charge a fee to validate this transaction and will earn a reward.

All the nodes on the Ethereum network execute smart contracts using

their respective EVMs.

b) Proof of Work

Every node in the Ethereum network has:

 The entire history of all the transactions—the entire chain

 The history of the smart contract, which is the address at which the

smart contract is deployed, along with the transactions associated with

the smart contract

 The handle to the current state of the smart contract

The goal of the miners on the Ethereum network is to validate the blocks.

For each block of a transaction, miners use their computational power and

resources to get the appropriate hash value by varying the nonce. The

miners will vary the nonce and pass it through a hashing algorithm—in

Ethereum, it is the Ethash algorithm.

This produces a hash value that should be less than the predefined target

as per the proof-of-work consensus. If the hash value generated is less

than the target value, then the block is considered to be verified, and the

miner gets rewarded.

When the proof of work is solved, the result is broadcast and shared with

all the other nodes to update their ledger. If other nodes accept the hashed

block as valid, then the block gets added to the Ethereum main

blockchain, and as a result, the miner receives a reward, which as of

today stands at three ethers. Plus, the miner gets the transaction fees that

have been generated for verifying the block. All the transactions that are

aggregated in the block—the cumulative transaction fees associated with

all the transactions are also rewarded to the miner.

c) Proof of Stake

In Ethereum, a process called proof of stake is also under development.

It is an alternative to proof of work and is meant to be a solution to

minimize the use of expensive resources spent on mining using proof of

work. In proof of stake, the miner—who is the validator—can validate

the transactions based on the number of crypto coins he or she holds

before actually starting the mining.

So, based on the accumulation of crypto coins the miner has beforehand,

he or she has a higher probability of mining the block. However, proof of

stake is not widely used as of now compared to proof of work.

d) Gas

Just like we need fuel to run a car, we need gas to run applications on the

Ethereum network. To perform any transaction within the Ethereum

network, a user must make a payment, in this case paying out ethers, to

get a transaction done, and the intermediary monetary value is called gas.

On the Ethereum network, gas is a unit that measures the computational

power required to run a smart contract or a transaction. So, if you must do

a transaction that updates the blockchain, you would have to shell out gas,

and that gas costs ethers.

In Ethereum, the transaction fees are calculated using a formula (see

screenshot below). For every transaction, there is gas and its correlated

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/

gas price. The transaction fees equal the amount of gas required to

execute a transaction multiplied by the gas price. “Gas limit” refers to the

amount of gas used for the computation and the amount of ether a user is

required to pay for the gas.

Below is a screenshot from the Ethereum network showing the

transaction cost. You can see for this particular transaction, the gas limit

was 21,000, the gas used by the transaction was 21,000, and the gas price

was 21 Gwei, which is the lowest denomination of ether. So, 21 Gwei *

21,000 gave the actual transaction fees: 0.000441 ethers, or about 21

cents as of today. As mentioned, the transaction fee goes to the miner,

who has validated the transaction.

To understand the gas limit and price, let’s consider an example using a

car. Suppose your vehicle has a mileage of 10 kilometers per liter and

petrol costs $1 per liter. Under these parameters, driving a car for 50

kilometers would cost you five liters of petrol, which is worth $5.

Similarly, to perform an operation or to run code on Ethereum, you need

to obtain a certain amount of gas, like petrol, and the gas has a per-unit

price, called gas price.

	What is Ethereum?
	Ethereum Features
	1. Ether
	2. Smart Contracts
	Smart Contracts Vs. Traditional Contract Systems
	3. Ethereum Virtual Machine
	a) How Does EVM Work?
	b) Proof of Work
	c) Proof of Stake
	d) Gas

