
Allocation Methods -
Contiguous

• An allocation method refers to how disk blocks
are allocated for files:

• Contiguous allocation – each file occupies set
of contiguous blocks
– Best performance in most cases
– Simple – only starting location (block #) and length

(number of blocks) are required
– Problems include finding space for file, knowing file

size, external fragmentation, need for compaction
off-line (downtime) or on-line

1 /24CS6401 / Unit 4 / Allocation methods, Free space management

Contiguous Allocation

• Mapping from logical
to physical

LA/512

Q

R

Block to be accessed = Q + starting address
Displacement into block = R

2 /24CS6401 / Unit 4 / Allocation methods, Free space management

Extent-Based Systems
• Many newer file systems (i.e., Veritas File System)

use a modified contiguous allocation scheme

• Extent-based file systems allocate disk blocks in
extents

• An extent is a contiguous block of disks
– Extents are allocated for file allocation
– A file consists of one or more extents

3 /24CS6401 / Unit 4 / Allocation methods, Free space management

Allocation Methods - Linked
• Linked allocation – each file a linked list of blocks

– File ends at nil pointer
– No external fragmentation
– Each block contains pointer to next block
– No compaction, external fragmentation
– Free space management system called when new block

needed
– Improve efficiency by clustering blocks into groups but

increases internal fragmentation
– Reliability can be a problem
– Locating a block can take many I/Os and disk seeks

4 /24CS6401 / Unit 4 / Allocation methods, Free space management

Allocation Methods – Linked
(Cont.)

• FAT (File Allocation Table) variation
– Beginning of volume has table, indexed by block

number
– Much like a linked list, but faster on disk and

cacheable
– New block allocation simple

5 /24CS6401 / Unit 4 / Allocation methods, Free space management

Linked Allocation
• Each file is a linked list of disk blocks: blocks may

be scattered anywhere on the disk
pointerblock =

� Mapping

Block to be accessed is the Qth block in the linked chain of blocks
representing the file.

Displacement into block = R + 1

LA/511
Q

R

6 /24CS6401 / Unit 4 / Allocation methods, Free space management

Linked Allocation

7 /24CS6401 / Unit 4 / Allocation methods, Free space management

File-Allocation Table

8 /24CS6401 / Unit 4 / Allocation methods, Free space management

Allocation Methods -Indexed

• Indexed allocation
– Each file has its own index block(s) of pointers to

its data blocks

• Logical view

index table

9 /24CS6401 / Unit 4 / Allocation methods, Free space management

Example of Indexed Allocation

10 /24CS6401 / Unit 4 / Allocation methods, Free space management

Indexed Allocation (Cont.)
• Need index table

• Random access

• Dynamic access without external fragmentation,
but have overhead of index block

• Mapping from logical to physical in a file of
maximum size of 256K bytes and block size of
512 bytes. We need only 1 block for index table

LA/512
Q

R

Q = displacement into index table
R = displacement into block

11 /24CS6401 / Unit 4 / Allocation methods, Free space management

Indexed Allocation –
Mapping (Cont.)

• Mapping from logical to physical in a file of
unbounded length (block size of 512 words)

• Linked scheme – Link blocks of index table (no
limit on size)

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

12 /24CS6401 / Unit 4 / Allocation methods, Free space management

Indexed Allocation –
Mapping (Cont.)

• Two-level index (4K blocks could store 1,024 four-
byte pointers in outer index -> 1,048,567 data
blocks and file size of up to 4GB)

LA / (512 x 512)
Q1

R1Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

13 /24CS6401 / Unit 4 / Allocation methods, Free space management

Indexed Allocation –
Mapping (Cont.)

14 /24CS6401 / Unit 4 / Allocation methods, Free space management

Combined Scheme: UNIX UFS

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

15 /24CS6401 / Unit 4 / Allocation methods, Free space management

Performance
• Best method depends on file access type

– Contiguous great for sequential and random
• Linked good for sequential, not random
• Declare access type at creation -> select either

contiguous or linked
• Indexed more complex

– Single block access could require 2 index block
reads then data block read

– Clustering can help improve throughput, reduce
CPU overhead

16 /24CS6401 / Unit 4 / Allocation methods, Free space management

Performance (Cont.)
• Adding instructions to the execution path to

save one disk I/O is reasonable
– Intel Core i7 Extreme Edition 990x (2011) at

3.46Ghz = 159,000 MIPS
– Typical disk drive at 250 I/Os per second

• 159,000 MIPS / 250 = 630 million instructions during one
disk I/O

– Fast SSD drives provide 60,000 IOPS
• 159,000 MIPS / 60,000 = 2.65 millions instructions during

one disk I/O

17 /24CS6401 / Unit 4 / Allocation methods, Free space management

Free-Space Management
• File system maintains free-space list to track available blocks/clusters

– (Using term “block” for simplicity)
• Bit vector or bit map (n blocks)

…
0 1 2 n-1

bit[i] =

 1 block[i] free

0 block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

18 /24CS6401 / Unit 4 / Allocation methods, Free space management

Free-Space Management
(Cont.)

• Bit map requires extra space
– Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 32MB)
if clusters of 4 blocks -> 8MB of

memory

• Easy to get contiguous files

19 /24CS6401 / Unit 4 / Allocation methods, Free space management

Linked Free Space List
on Disk

Linked list (free list)
• Cannot get contiguous space

easily
• No waste of space
• No need to traverse the entire

list (if # free blocks recorded)

20 /24CS6401 / Unit 4 / Allocation methods, Free space management

Free-Space Management (Cont.)
• Grouping

– Modify linked list to store address of next n-1 free
blocks in first free block, plus a pointer to next block
that contains free-block-pointers (like this one)

• Counting
– Because space is frequently contiguously used and

freed, with contiguous-allocation allocation,
extents, or clustering

• Keep address of first free block and count of following
free blocks

• Free space list then has entries containing addresses and
counts

21 /24CS6401 / Unit 4 / Allocation methods, Free space management

Free-Space Management
(Cont.)

• Space Maps
– Used in ZFS
– Consider meta-data I/O on very large file systems

• Full data structures like bit maps couldn’t fit in memory -> thousands of
I/Os

– Divides device space into metaslab units and manages metaslabs
• Given volume can contain hundreds of metaslabs

– Each metaslab has associated space map
• Uses counting algorithm

– But records to log file rather than file system
• Log of all block activity, in time order, in counting format

– Metaslab activity -> load space map into memory in balanced-tree
structure, indexed by offset

• Replay log into that structure
• Combine contiguous free blocks into single entry

22 /24CS6401 / Unit 4 / Allocation methods, Free space management

Efficiency and Performance

• Efficiency dependent on:
– Disk allocation and directory algorithms
– Types of data kept in file’s directory entry
– Pre-allocation or as-needed allocation of

metadata structures
– Fixed-size or varying-size data structures

23 /24CS6401 / Unit 4 / Allocation methods, Free space management

Efficiency and Performance
(Cont.)

• Performance
– Keeping data and metadata close together
– Buffer cache – separate section of main memory for frequently

used blocks
– Synchronous writes sometimes requested by apps or needed by

OS
• No buffering / caching – writes must hit disk before acknowledgement
• Asynchronous writes more common, buffer-able, faster

– Free-behind and read-ahead – techniques to optimize
sequential access

– Reads frequently slower than writes

24 /24CS6401 / Unit 4 / Allocation methods, Free space management

