SNS College of Engineering

Coimbatore - 641107

Limitations of Algorithmic Power

Limitations of Algorithmic
 Power

*Introduction
*Lower Bounds
*P, NP, NP-complete and NP-hard Problems

Introduction

Algorithm efficiency:

- Logarithmic
- Linear
- Polynomial with a lower bound
- Exponential

Some problems cannot be solved by any algorithm
Question: how to compare algorithms and their efficiency

Lower Bounds

Lower bound: an estimate on a minimum amount of work needed to solve a given problem

Lower bound can be an exact count an efficiency class (Ω)

Tight lower bound: there exists an algorithm with the same efficiency as the lower bound

Example

Problem
Lower bound Tightness
sorting
$\Omega(n \log n)$ yes
searching in a sorted array
$\Omega(\log n)$ yes
element uniqueness
n-digit integer multiplication
$\Omega(n \log n)$ yes
multiplication of n-by- n matrices $\Omega\left(n^{2}\right)$ unknown

Methods for Establishing Lower Bounds

- trivial lower bounds
- information-theoretic arguments (decision trees)
- adversary arguments
- problem reduction

Trivial Lower Bounds

- Based on counting the number of items that must be processed in input and generated as output
- Examples
\square finding max element
\square sorting
\square element uniqueness

Decision Trees

A convenient model of algorithms involving comparisons in which:

\author{

- internal nodes represent comparisons - leaves represent outcomes
}

Decision tree for 3-element insertion sort

Decision Trees and Sorting Algorithms

- Any comparison-based sorting algorithm can be represented by a decision tree
- Number of leaves (outcomes) $\geq n$!
- Height of binary tree with n ! leaves $\geq\left\lceil\log _{2} n!\right\rceil$
- Minimum number of comparisons in the worst case \geq
$\left\lceil\log _{2} n!\right\rceil$ for any comparison-based sorting algorithm
- $\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n$
- This lower bound is tight (mergesort)

Adversary Arguments

Adversary argument: a method of proving a lower bound by playing role of adversary that makes algorithm work the hardest by adjusting input

Example: "Guessing" a number between 1 and n with yes/no questions

Adversary: Puts the number in a larger of the two subsets generated by last question

Lower Bounds by Problem Reduction

Idea: If problem P is at least as hard as problem Q, then a lower bound for Q is also a lower bound for P.

Hence, find problem Q with a known lower bound that can be reduced to problem P in question. Then any algorithm that solves P will also solve \mathbf{Q}.

Example of Reduction

Problem Q: Given a sequence of boolean values, does at least one of them have the value "true"?

Problem P: Given a sequence of integers, is the maximum of integers positive?
$f\left(x_{1}, x_{2}, \ldots x_{n}\right)=y_{1}, y_{2}, \ldots y_{n}$
where $y_{i}=0$ if $x_{i}=$ false, $y_{i}=1$ if $x_{i}=$ true

P, NP, NP-complete, and NP-hard Problems

- Decision and Optimization problems
- Decidable, semi-decidable and undecidable problems
- Class P, NP, NP-complete and NP-hard problems

Class P

- P: the class of decision problems that are solvable in $\mathbf{O}(p(n))$ time, where $p(n)$ is a polynomial of problem's input size n. Problems in this class are called tractable
- Examples:
$>$ searching
$>$ graph connectivity

Class NP

- NP (nondeterministic polynomial): class of decision problems whose proposed solutions can be verified in polynomial_time = solvable by a nondeterministic polynomial algorithm.
- Problems in this class are called intractable

Problems in NP

- Hamiltonian circuit existence
- Partition problem: Is it possible to partition a set of n integers into two disjoint subsets with the same sum?
- Decision versions of TSP, knapsack problem, graph coloring, and many other combinatorial optimization problems. (Few exceptions include: MST, shortest paths)

P and NP

- All the problems in \boldsymbol{P} can also be solved in this manner (but no guessing is necessary), so we have:

$$
P \subseteq N P
$$

- $P=N P$?

P = NP ?

- $P=N P$ would imply that every problem in $N P$, including all NP-complete problems, could be solved in polynomial time
- If a polynomial-time algorithm for just one NPcomplete problem is discovered, then every problem in NP can be solved in polynomial time, i.e., $P=N P$
- Most but not all researchers believe that $P \neq N P$, i.e. P is a proper subset of NP

NP-Hard Problems

NP-hard problems are NP-complete but not necessarily in NP.

Examples - the optimization versions of the NP problems

