UNIT IV

MEMORY MANAGEMENT

COMPLUTER
E
T

CODE S . CALL Ll =
W O EESGU FI:EEE

e P E RATI NG

E THE;.EEH: I-_'I"-J

—~ e e L

EEH

i

SDFTWA

EMORY MANAGEMENT

Memory management Virtual Memory Management
strategies + Background

Demand paging

» Background

» Swapping Copy on write

 Contiguous Memory Allocation Page replacement algorithms

Allocation of frames

e Segmentation

 Paging Thrashing.

o Structure of Page Table

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Page Replacement

* Prevent over-allocation of memory by modifying page-fault service routine to

Include page replacement

» Use modify (dirty) bit to reduce overhead of page transfers — only modified

pages are written to disk

* Page replacement completes separation between logical memory and physical
memory — large virtual memory can be provided on a smaller physical

memory

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

valid—inwvalid

O H frame it O | monitor
1 load M & J 1 l
oa
PC —> e v
2 J 4 |v 2 D
5 |v
= M : 3 H
logical memory page table 4| load M
for user 1 for user 1
5 J
6 A
valid—invalid Fé E
0 A frame bit
N J physical
1 B & |z memory
2 D i
2 |v
3 E 7|V
logical memory page table
for user 2 for user 2

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

e T — _:‘

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- Ifthere is a free frame, use it
- If there is no free frame, use a page replacement algorithm to select a victim frame

- Write victim frame to disk if dirty
3. Bring the desired page into the (newly) free frame; update the page and frame tables
4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault — increasing EAT

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

ety g
/‘" - | s

YINSTITUTIONS,

frame valid—invalid bit

Ny ¥
change
0 i to invalid
f v
reset page
page table table for
new page

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

swap out
victim

age Replacement

<R
L.

victim
:: swap
desired
page in
physical
memaory

B~ Page and Frame
SEITTT Replacement Algorithms
a 1S

. Frame-allocation algorithm determines
 How many frames to give each process
* Which frames to replace

» Page-replacementalgorithm
« Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

o String is just page numbers, not full addresses
» Repeated access to the same page does not cause a page fault
» Results depend on number of frames available

 Inall our examples, the reference string of referenced page numbers is
7,0,1,2,0,3,04,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Graph of Page Faults Versus
The Number of Frames

—
o

number of page faults

N & O @

number of frames

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

’St-In-First-Out (FIFO) Algorithm

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
3 frames (3 pages can be in memory at a time per process)

reference string

¥ B T Z N B BE 2 B e miE & 2 E 4 %o A
7| 17 |7] (2] |2 [2] [4] [4] [4] |o] 0| |0 7| 17| |7]
| | [o] |o] |of 3| [2] 2] [2 1] (1] 1) |o| |o
L [) [[of [of [of [8] [a] 3] |2 2| |2] 1]

page frames

15 page faults

e Canvary by reference string: consider 1,2,34,1,2,5,1,2,3,4,5
« Adding more frames can cause more page faults!
e Belady’s Anomaly

How to track ages of pages?
e Just use a FIFO queue

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

-l
o

number of page faults

N A OO ©

1 2 3 4
number of frames

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Optimal Algorithm

INSTHTUTIONE

» Replace page that will not be used for longest period of time
e 9is optimal for the example

* How do you know this?
e Can’'t read the future

 Used for measuring how well your algorithm performs

reference string
7 2 ¢ 3 0o 4 2 3 6 3 2 1 2 0

7| [7] [7] [2 2 2 2 2
ol [o] |o 0 4 0 0
R 3 3 3 -

page frames

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

= O[]

), u’f'y,,g,,. cast Recently Used (LRU) Algorithm
» Use past knowledge rather than future
» Replace page that has not been used in the most amount of time
» Associate time of last use with each page

reference string
7 O 1 2 O 3 0O 4 2 3 0 3 2 1 2 O 1 7 O 1

¥ 7 ¥ 2 2 4| |4 4 O 1 1 1
O O 0 O O 0 3 3 3 O 0
1 1 3 3 2 2 2 2 2 7

page frames

o 12 faults — better than FIFO but worse than OPT
» Generally good algorithm and frequently used

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

.

“"LRU Algorithm (Cont.)

~» Counter implementation

e Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter

* When a page needs to be changed, look at the counters to find smallest value
« Search through table needed

o Stack implementation
» Keep a stack of page numbers in a double link form:
e Page referenced:
e move it to the top
* requires 6 pointers to be changed
e But each update more expensive
* No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have Belady’s Anomaly

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

sni s
| s

T e Of A Stack to Record Most Recent Page References

reference string
4 v O 7 1 o 1 2 1 2 7 1 2

a b
1 2
0 1
7 0
4 4
stack stack
before after
a b

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

e

RU Approximation Algorithms

M I‘-.-' .

oy - -

350 - =
¥

' ngr ONS;

~« LRU needs special hardware and still slow

e Reference bit
» With each page associate a bit, initially =0
* When page is referenced bit setto 1
» Replace any with reference bit = 0 (if one exists)
* We do not know the order, however

e Second-chance algorithm
» Generally FIFO, plus hardware-provided reference bit
» Clock replacement
 |f page to be replaced has
» Reference bit =0 -> replace it
» reference bit =1 then:
 set reference bit O, leave page in memory
» replace next page, subject to same rules

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

e
p s

QVSTITUTIONS, Second-Chance (clock) Page-Replacement Algorithm

reference pages reference pages
bits bits
o] o]

v v
o] o]

v v
viatim o]

v v
o]

v v
o] == 0|

v v

circular queue of pages circular queue of pages
(a) (b)

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

e

nhanced Second-Chance Algorithm

. ’Improve algorithm by using reference bit and modify bit (if available) in concert

» Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified — best page to replace

2. (0, 1) not recently used but modified — not quite as good, must write out before

replacement
3. (1, 0) recently used but clean — probably will be used again soon

4. (1, 1) recently used and modified — probably will be used again soon and need to

write out before replacement

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

» Keep a counter of the number of references that have been made to each page

 Not common
» Lease Frequently Used (LFU) Algorithm: replaces page with smallest count

e Most Frequently Used (MFU) Algorithm: based on the argument that the
page with the smallest count was probably just brought in and has yet to be

used

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

. Keep a pool of free frames, always

* Then frame available when needed, not found at fault time
* Read page into free frame and select victim to evict and add to free pool

 When convenient, evict victim
» Possibly, keep list of modified pages

* When backing store otherwise idle, write pages there and set to non-dirty

» Possibly, keep free frame contents intact and note what is in them

* If referenced again before reused, no need to load contents again from disk
» Generally useful to reduce penalty if wrong victim frame selected

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

G T R T — ‘-‘

Applications and Page Replacement

o All of these algorithms have OS guessing about future page access
« Some applications have better knowledge —i.e. databases

« Memory intensive applications can cause double buffering
» OS keeps copy of page in memory as 1/0 buffer

« Application keeps page in memory for its own work

e Operating system can given direct access to the disk, getting out of the way of the

applications
* Raw disk mode
» Bypasses buffering, locking, etc

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

S R

Allocain of Frames

» Each process needs minimum number of frames

 Example: IBM 370 - 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
» 2 pages to handle from

e 2 pages to handle to
 Maximum of course is total frames in the system

« Two major allocation schemes

« fixed allocation
e priority allocation

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

ixed Allocation

« Equal allocation — For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames

« Keep some as free frame buffer pool

* Proportional allocation — Allocate according to the size of process
* Dynamic as degree of multiprogramming, process sizes change

— S; = size of process p;

— S =ZSi

— m = total number

— a; = allocation

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

for p; =

of frames

S
L xm
S

m = 64

s1=10

s, =127
ﬂ x62~4
137
127

a, = x 62 = 57
137

Priority Allocation

« Use a proportional allocation scheme using priorities rather than size

* |f process P; generates a page fault,
 select for replacement one of its frames

 select for replacement a frame from a process with lower priority

number

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Global vs. Local Allocation

* Global replacement — process selects a replacement frame from the set

of all frames; one process can take a frame from another
e But then process execution time can vary greatly
e But greater throughput so more common
* Local replacement - each process selects from only its own set of
allocated frames
* More consistent per-process performance

« But possibly underutilized memory

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Non-Uniform Memory Access

 So far all memory accessed equally

* Many systems are NUMA - speed of access to memory varies
» Consider system boards containing CPUs and memory, interconnected over a
system bus
* Optimal performance comes from allocating memory “close to” the CPU on which
the thread is scheduled

* And modifying the scheduler to schedule the thread on the same system board
when possible

» Solved by Solaris by creating Igroups
 Structure to track CPU / Memory low latency groups
e Used my schedule and pager

* When possible schedule all threads of a process and allocate all memory for
that process within the Igroup

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

V Thrashing

o If a process does not have “enough” pages, the page-fault rate is very high

Page fault to get page

Replace existing frame

But quickly need replaced frame back

This leads to:

e Low CPU utilization

o Operating system thinking that it needs to increase the degree of
multiprogramming

» Another process added to the system

e Thrashing=a process is busy swapping pages in and out

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

CPU utilization

thrashing

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

degree of multiprogramming

= T — = e — . *-—-nu—»“...‘

Demand Paging and Thrashing

* Why does demand paging work?

Locality model
* Process migrates from one locality to another
 Localities may overlap
* Why does thrashing occur?
> size of locality > total memory size

 Limit effects by using local or priority page replacement

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

memory address

page numbers

34 4

32

30

28"

26

24

22

T i |l
‘Hh IR \HHH“MIHHHH‘ IIIIIIII s (T P e m\ Tl
"
H o s : M'H - |q“ T ‘i“ ‘U.W“ .
"""" | i | [ijixh L :s ‘Jlx |!'|;| yl: 1{ ”:uw ,m\ 'E“H
il bl B ”' il ‘l‘““ﬂ” ‘ o M “; ; M i i ““‘l \l‘['§11
H H | J ~ i || \H TIH\ It i HH | o
L anﬂ 11“'"‘ dodl H...:JJ‘H“.i ‘ 1&,”::1”“ ol il
Lol
LA
“\l \:1 !“ 1
il ‘1 (.

mm\m R

I I Iy
I ‘ HII
il lw |

T
LAARRRRRRNLE T Wl
i

i

HHIHH il

mmm\ mu W

I H‘»
wnhwm WWI“!w*”*"'wh l\hmnlmu e | [l
A g | AL ‘HH”} m m“w o i
i, M AN ‘\ Imillh Lm Hw.'..wi:-' “w?'.w"!!!‘i‘-‘- il

T TR IR, TTIT

it HHIIHIH ||”H H| i H||

\\

JJJJJ

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

execution time ———

< - WO rking-Set Model

A =working-set window = a fixed number of page references
Example: 10,000 instructions

WSS; (working set of Process P;) = total number of pages referenced in the most recent A (varies in time)
 if A too small will not encompass entire locality
 if A too large will encompass several localities
* iIf A =00 = will encompass entire program

D = X WSS, = total demand frames
e Approximation of locality

if D >m = Thrashing

Policy if D > m, then suspend or swap out one of the processes

page reference table
...2615777751623412344434344413234443444...

. e

t t

WS(t,) = {1,2,5,6,7} WS(t,) = {3,4}

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Keeping Track of the Working Set

» Approximate with interval timer + a reference bit

» Example: A=10,000
* Timer interrupts after every 5000 time units
« Keep in memory 2 bits for each page
* Whenever a timer interrupts copy and sets the values of all reference bits to O

o If one of the bits in memory = 1 = page in working set
» \Why is this not completely accurate?

» |[mprovement = 10 bits and interrupt every 1000 time units

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

* More direct approach than WSS

» Establish “acceptable” page-fault frequency (PFF) rate and use local

replacement policy

o If actual rate too low, process loses frame
« If actual rate too high, process gains frame

page-fault rate

increase number
of frames

upper bound

lower bound
decrease number
of frames

number of frames
Dr.B.Anuradha /7 ASP / CSD/ SEM 4 / OS

rate
Working set changes over time
Peaks and valleys over time

Direct relationship between working set of a process and its page-fault

working set

page

fault
O

time

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

orking Sets and Page Fault Rates

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10t Edition, John Wiley &
Sons, Inc., 2018.
2.Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

REFERENCES

1. William Stallings, “Operating Systems: Internals and Design Principles”,9t"Edition, Prentice Hall of India., 2018.
2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach” 3"Edition, Tata McGraw hill 2016.
3. P.C.Bhatt, “An Introduction to Operating Systems—Concepts and Practice" 4" Edition, Prentice Hall of India., 2013.

THANK YOU

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

