
UNIT

MEMORY MANAGEMENT

UNIT IV

MEMORY MANAGEMENT

MEMORY MANAGEMENT

Memory management
strategies
• Background

• Swapping

• Contiguous Memory Allocation

• Segmentation

• Paging

• Structure of Page Table

Virtual Memory Management
•

•

•

•

•

•

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

MEMORY MANAGEMENT

Virtual Memory Management
Background

Demand paging

Copy on write

Page replacement algorithms

Allocation of frames

Thrashing.

Page Replacement

• Prevent over-allocation of memory by modifying page

include page replacement

• Use modify (dirty) bit to reduce overhead of page transfers

pages are written to disk

• Page replacement completes separation between logical memory and physical

memory – large virtual memory can be provided on a smaller physical

memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Page Replacement

of memory by modifying page-fault service routine to

to reduce overhead of page transfers – only modified

Page replacement completes separation between logical memory and physical

large virtual memory can be provided on a smaller physical

Need For Page Replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Need For Page Replacement

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to select a

- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Basic Page Replacement

Find the location of the desired page on disk

If there is no free frame, use a page replacement algorithm to select a victim frame

Bring the desired page into the (newly) free frame; update the page and frame tables

Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing EAT

Page Replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Page Replacement

Page and Frame
Replacement Algorithms

• Frame-allocation algorithm determines
• How many frames to give each process
• Which frames to replace

• Page-replacement algorithm
• Want lowest page-fault rate on both first access and re

• Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

• String is just page numbers, not full addresses
• Repeated access to the same page does not cause a page fault
• Results depend on number of frames available

• In all our examples, the reference string
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Page and Frame
Replacement Algorithms

determines
How many frames to give each process

fault rate on both first access and re-access
Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string

String is just page numbers, not full addresses
Repeated access to the same page does not cause a page fault
Results depend on number of frames available

reference string of referenced page numbers is
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Graph of Page Faults Versus
The Number of Frames

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Graph of Page Faults Versus
The Number of Frames

First-In-First
• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
• 3 frames (3 pages can be in memory at a time per process)

• Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
• Adding more frames can cause more page faults!

• Belady’s Anomaly
• How to track ages of pages?

• Just use a FIFO queue

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

First-Out (FIFO) Algorithm
7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

3 frames (3 pages can be in memory at a time per process)

Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
Adding more frames can cause more page faults!

15 page faults

FIFO Illustrating

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

FIFO Illustrating Belady’s Anomaly

Optimal Algorithm

• Replace page that will not be used for longest period of time
• 9 is optimal for the example

• How do you know this?
• Can’t read the future

• Used for measuring how well your algorithm performs

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Optimal Algorithm

Replace page that will not be used for longest period of time

Used for measuring how well your algorithm performs

Least Recently Used (LRU) Algorithm

• Use past knowledge rather than future
• Replace page that has not been used in the most amount of time
• Associate time of last use with each page

• 12 faults – better than FIFO but worse than OPT
• Generally good algorithm and frequently used

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Least Recently Used (LRU) Algorithm

Replace page that has not been used in the most amount of time
Associate time of last use with each page

better than FIFO but worse than OPT
Generally good algorithm and frequently used

LRU Algorithm (Cont.)

• Counter implementation
• Every page entry has a counter; every time page is referenced through this

entry, copy the clock into the counter
• When a page needs to be changed, look at the counters to find smallest value

• Search through table needed
• Stack implementation

• Keep a stack of page numbers in a double link form:
• Page referenced:

• move it to the top
• requires 6 pointers to be changed

• But each update more expensive
• No search for replacement

• LRU and OPT are cases of stack algorithms

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

LRU Algorithm (Cont.)

Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter
When a page needs to be changed, look at the counters to find smallest value

Keep a stack of page numbers in a double link form:

requires 6 pointers to be changed

stack algorithms that don’t have Belady’s Anomaly

Use Of A Stack to Record Most Recent Page References

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Use Of A Stack to Record Most Recent Page References

LRU Approximation Algorithms
• LRU needs special hardware and still slow
• Reference bit

• With each page associate a bit, initially = 0
• When page is referenced bit set to 1
• Replace any with reference bit = 0 (if one exists)

• We do not know the order, however
• Second-chance algorithm

• Generally FIFO, plus hardware-provided reference bit
• Clock replacement
• If page to be replaced has

• Reference bit = 0 -> replace it
• reference bit = 1 then:

• set reference bit 0, leave page in memory
• replace next page, subject to same rules

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

LRU Approximation Algorithms
LRU needs special hardware and still slow

With each page associate a bit, initially = 0

Replace any with reference bit = 0 (if one exists)
We do not know the order, however

provided reference bit

set reference bit 0, leave page in memory
replace next page, subject to same rules

Second-Chance (clock) Page

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Chance (clock) Page-Replacement Algorithm

Enhanced Second

• Improve algorithm by using reference bit and modify bit (if available) in concert
• Take ordered pair (reference, modify)

1. (0, 0) neither recently used not modified

2. (0, 1) not recently used but modified – not quite as good, must write out before

replacement

3. (1, 0) recently used but clean – probably will be used again soon

4. (1, 1) recently used and modified – probably will be used again soon and need to

write out before replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Enhanced Second-Chance Algorithm

Improve algorithm by using reference bit and modify bit (if available) in concert

neither recently used not modified – best page to replace

not quite as good, must write out before

probably will be used again soon

probably will be used again soon and need to

Counting Algorithms

• Keep a counter of the number of references that have been made to each page

• Not common

• Lease Frequently Used (LFU) Algorithm

• Most Frequently Used (MFU) Algorithm

page with the smallest count was probably just brought in and has yet to be

used

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Counting Algorithms

Keep a counter of the number of references that have been made to each page

Algorithm: replaces page with smallest count

Algorithm: based on the argument that the

page with the smallest count was probably just brought in and has yet to be

Page-

• Keep a pool of free frames, always

• Then frame available when needed, not found at fault time

• Read page into free frame and select victim to evict and add to free pool

• When convenient, evict victim

• Possibly, keep list of modified pages

• When backing store otherwise idle, write pages there and set to non

• Possibly, keep free frame contents intact and note what is in them
• If referenced again before reused, no need to load contents again from disk
• Generally useful to reduce penalty if wrong victim frame selected

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

-Buffering Algorithms

Then frame available when needed, not found at fault time

Read page into free frame and select victim to evict and add to free pool

When backing store otherwise idle, write pages there and set to non-dirty

Possibly, keep free frame contents intact and note what is in them
If referenced again before reused, no need to load contents again from disk
Generally useful to reduce penalty if wrong victim frame selected

Applications and Page Replacement

• All of these algorithms have OS guessing about future page access

• Some applications have better knowledge

• Memory intensive applications can cause double buffering

• OS keeps copy of page in memory as I/O buffer

• Application keeps page in memory for its own work

• Operating system can given direct access to the disk, getting out of the way of the

applications
• Raw disk mode

• Bypasses buffering, locking, etc
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Applications and Page Replacement

All of these algorithms have OS guessing about future page access

Some applications have better knowledge – i.e. databases

Memory intensive applications can cause double buffering

OS keeps copy of page in memory as I/O buffer

Application keeps page in memory for its own work

Operating system can given direct access to the disk, getting out of the way of the

Allocation of Frames

• Each process needs minimum number of frames

• Example: IBM 370 – 6 pages to handle SS MOVE instruction:

• instruction is 6 bytes, might span 2 pages

• 2 pages to handle from

• 2 pages to handle to

• Maximum of course is total frames in the system

• Two major allocation schemes
• fixed allocation
• priority allocation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Allocation of Frames

number of frames

6 pages to handle SS MOVE instruction:

instruction is 6 bytes, might span 2 pages

of course is total frames in the system

Fixed Allocation

• Equal allocation – For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames

• Keep some as free frame buffer pool

• Proportional allocation – Allocate according to the size of process
• Dynamic as degree of multiprogramming, process sizes change

S
spa

m
sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Fixed Allocation

For example, if there are 100 frames (after allocating
frames for the OS) and 5 processes, give each process 20 frames

Keep some as free frame buffer pool

Allocate according to the size of process
Dynamic as degree of multiprogramming, process sizes change

m

m 64
s110
s2 127

a1
10
137

 62 » 4

a2
127
137

 62 » 57

Priority Allocation

• Use a proportional allocation scheme using priorities rather than

• If process Pi generates a page fault,

• select for replacement one of its frames

• select for replacement a frame from a process with lower priority

number

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Priority Allocation

Use a proportional allocation scheme using priorities rather than size

select for replacement one of its frames

select for replacement a frame from a process with lower priority

Global vs. Local Allocation
• Global replacement – process selects a replacement frame from the set

of all frames; one process can take a frame from another

• But then process execution time can vary greatly

• But greater throughput so more common

• Local replacement – each process selects from only its own set of

allocated frames

• More consistent per-process performance

• But possibly underutilized memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Global vs. Local Allocation
process selects a replacement frame from the set

of all frames; one process can take a frame from another

But then process execution time can vary greatly

common

each process selects from only its own set of

process performance

But possibly underutilized memory

Non-Uniform Memory Access

• So far all memory accessed equally
• Many systems are NUMA – speed of access to memory varies

• Consider system boards containing CPUs and memory, interconnected over a
system bus

• Optimal performance comes from allocating memory
the thread is scheduled

• And modifying the scheduler to schedule the thread on the same system board
when possible

• Solved by Solaris by creating lgroups
• Structure to track CPU / Memory low latency groups
• Used my schedule and pager
• When possible schedule all threads of a process and allocate all memory for

that process within the lgroup

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Uniform Memory Access

speed of access to memory varies
Consider system boards containing CPUs and memory, interconnected over a

Optimal performance comes from allocating memory “close to” the CPU on which

And modifying the scheduler to schedule the thread on the same system board

Structure to track CPU / Memory low latency groups

When possible schedule all threads of a process and allocate all memory for

Thrashing

• If a process does not have “enough” pages, the page

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

• This leads to:
• Low CPU utilization
• Operating system thinking that it needs to increase the degree of

multiprogramming
• Another process added to the system

• Thrashing a process is busy swapping pages in and out

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thrashing

pages, the page-fault rate is very high

But quickly need replaced frame back

Operating system thinking that it needs to increase the degree of

system

a process is busy swapping pages in and out

Thrashing (Cont.)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thrashing (Cont.)

Demand Paging and Thrashing

• Why does demand paging work?

Locality model

• Process migrates from one locality to another

• Localities may overlap

• Why does thrashing occur?

 size of locality > total memory size

• Limit effects by using local or priority page replacement

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Demand Paging and Thrashing

Process migrates from one locality to another

Limit effects by using local or priority page replacement

Locality In A Memory

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

m
em

or
y

ad
dr

es
s

execution time

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Locality In A Memory-Reference Pattern

Working

• working-set window a fixed number of page references
Example: 10,000 instructions

• WSSi (working set of Process Pi) = total number of pages referenced in the most recent
• if too small will not encompass entire locality
• if too large will encompass several localities
• if = will encompass entire program

• D = WSSi total demand frames
• Approximation of locality

• if D > m Thrashing
• Policy if D > m, then suspend or swap out one of the processes

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Working-Set Model

a fixed number of page references

number of pages referenced in the most recent (varies in time)

> m, then suspend or swap out one of the processes

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example: = 10,000

• Timer interrupts after every 5000 time units

• Keep in memory 2 bits for each page

• Whenever a timer interrupts copy and sets the values of all reference bits to 0

• If one of the bits in memory = 1 page in working set

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Keeping Track of the Working Set

Approximate with interval timer + a reference bit

Timer interrupts after every 5000 time units

Whenever a timer interrupts copy and sets the values of all reference bits to 0

page in working set

Improvement = 10 bits and interrupt every 1000 time units

Page-
• More direct approach than WSS

• Establish “acceptable” page-fault frequency

replacement policy
• If actual rate too low, process loses frame
• If actual rate too high, process gains frame

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

-Fault Frequency

fault frequency (PFF) rate and use local

If actual rate too low, process loses frame
If actual rate too high, process gains frame

Working Sets and Page Fault Rates
 Direct relationship between working set of a process and its page

rate
 Working set changes over time
 Peaks and valleys over time

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Working Sets and Page Fault Rates
Direct relationship between working set of a process and its page-fault

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

