
UNIT

MEMORY MANAGEMENT

UNIT IV

MEMORY MANAGEMENT

MEMORY MANAGEMENT

Memory management
strategies
• Background

• Swapping

• Contiguous Memory Allocation

• Segmentation

• Paging

• Structure of Page Table

Virtual Memory Management
•

•

•

•

•

•

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

MEMORY MANAGEMENT

Virtual Memory Management
Background

Demand paging

Copy on write

Page replacement algorithms

Allocation of frames

Thrashing.

Segmentation

• Memory-management scheme that supports user view of memory
• A program is a collection of segments

• A segment is a logical unit such as:
main program
procedure
function
method
object
local variables, global variables
common block
stack
symbol table
arraysDr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Segmentation

management scheme that supports user view of memory
A program is a collection of segments

A segment is a logical unit such as:

local variables, global variables

User

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

User’s View of a Program

1

3

2

4

user space

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Logical View of
Segmentation

1

4

2

3

physical memory space

Segmentation Architecture

• Logical address consists of a two tuple:
<segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each table entry
has:

• base – contains the starting physical address where the segments reside in
memory

• limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment table
memory

• Segment-table length register (STLR)
a program;

segment number s is legal if s <

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Segmentation Architecture

dimensional physical addresses; each table entry

contains the starting physical address where the segments reside in

specifies the length of the segment

points to the segment table’s location in

indicates number of segments used by

< STLR

Segmentation Architecture

• Protection

• With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at

segment level

• Since segments vary in length, memory allocation is a

storage-allocation problem

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Segmentation Architecture
(Cont.)

With each entry in segment table associate:

illegal segment

Protection bits associated with segments; code sharing occurs at

, memory allocation is a dynamic

Segmentation Hardware

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Segmentation Hardware

• Physical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available

• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called
• Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called
• Keep track of all free frames
• To run a program of size N pages, need to find
• Set up a page table to translate logical to physical addresses
• Backing store likewise split into pages
• Still have Internal fragmentation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging

Physical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available

Avoids problem of varying sized memory chunks
sized blocks called frames

is power of 2, between 512 bytes and 16 Mbytes
Divide logical memory into blocks of same size called pages

pages, need to find N free frames and load program
to translate logical to physical addresses

Address Translation Scheme
• Address generated by CPU is divided into:

• Page number (p) – used as an index into a

base address of each page in physical memory

• Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit

• For given logical address space 2m and page size

page number
p

m -n

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Address Translation Scheme
Address generated by CPU is divided into:

used as an index into a page table which contains

base address of each page in physical memory

combined with base address to define the physical

memory address that is sent to the memory unit

and page size 2n

page offset

d

n

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging Hardware

Paging Model of Logical
and Physical Memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging Model of Logical
and Physical Memory

n=2 and m=4 32-byte memory and 4-byte pages

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging Example

byte pages

• Calculating internal fragmentation

• Page size = 2,048 bytes , Process

• 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 -

• Worst case fragmentation = 1 frame

• On average fragmentation = 1 / 2 frame size

• But each page table entry takes memory to track

• Page sizes growing over time
• Solaris supports two page sizes

• Process view and physical memory now very different

• By implementation process can only access its own memory
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging (Cont.)

bytes , Process size = 72,766 bytes

- 1,086 = 962 bytes

Worst case fragmentation = 1 frame – 1 byte

On average fragmentation = 1 / 2 frame size

each page table entry takes memory to track

Solaris supports two page sizes – 8 KB and 4 MB

Process view and physical memory now very different

By implementation process can only access its own memory

Before allocation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Free Frames

After allocation

Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses

• One for the page table and one for the data / instruction

• The two memory access problem can be solved by the use of a special fast

lookup hardware cache called associative memory

buffers (TLBs)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Implementation of Page Table

points to the page table

indicates size of the page table

In this scheme every data/instruction access requires two memory accesses

One for the page table and one for the data / instruction

The two memory access problem can be solved by the use of a special fast-

associative memory or translation look-aside

Implementation of Page Table (Cont.)
• Some TLBs store address-space identifiers

uniquely identifies each process to provide address

process

• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster access next time

• Replacement policies must be considered

• Some entries can be wired down for permanent fast access

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Implementation of Page Table (Cont.)
space identifiers (ASIDs) in each TLB entry –

uniquely identifies each process to provide address-space protection for that

Otherwise need to flush at every context switch

TLBs typically small (64 to 1,024 entries)

On a TLB miss, value is loaded into the TLB for faster access next time

Replacement policies must be considered

for permanent fast access

Associative Memory

• Associative memory – parallel search

• Address translation (p, d)

• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Associative Memory

If p is in associative register, get frame # out

Otherwise get frame # from page table in memory

Paging Hardware With TLB

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Paging Hardware With TLB

Effective Access Time

• Associative Lookup =  time unit
• Can be < 10% of memory access time

• Hit ratio = 
• Hit ratio – percentage of times that a page number is found in the associative registers;

ratio related to number of associative registers
• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access
• Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 –
= 2 +  – 

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access
• EAT = 0.80 x 100 + 0.20 x 200 = 120ns

• Consider more realistic hit ratio ->  = 99%,
access

• EAT = 0.99 x 100 + 0.01 x 200 = 101ns
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Effective Access Time

percentage of times that a page number is found in the associative registers;
ratio related to number of associative registers

= 20ns for TLB search, 100ns for memory access

)

= 20ns for TLB search, 100ns for memory access

= 99%,  = 20ns for TLB search, 100ns for memory

Memory Protection

• Memory protection implemented by associating protection bit with each frame to

indicate if read-only or read-write access is allowed

• Can also add more bits to indicate page execute

• Valid-invalid bit attached to each entry in the page table:

• “valid” indicates that the associated page is in the process

space, and is thus a legal page

• “invalid” indicates that the page is not in the process

• Or use page-table length register (PTLR

• Any violations result in a trap to the kernel

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Memory Protection

Memory protection implemented by associating protection bit with each frame to

write access is allowed

Can also add more bits to indicate page execute-only, and so on

bit attached to each entry in the page table:

indicates that the associated page is in the process’ logical address

indicates that the page is not in the process’ logical address space

PTLR)

Any violations result in a trap to the kernel

Valid (v) or Invalid (

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Valid (v) or Invalid (i) Bit In A Page Table

• Shared code

• One copy of read-only (reentrant) code shared among processes (i.e., text

editors, compilers, window systems)

• Similar to multiple threads sharing the same process space

• Also useful for interprocess communication if sharing of read

is allowed

• Private code and data

• Each process keeps a separate copy of the code and data
• The pages for the private code and data can appear anywhere in the logical

address space
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Shared Pages

) code shared among processes (i.e., text

editors, compilers, window systems)

Similar to multiple threads sharing the same process space

communication if sharing of read-write pages

Each process keeps a separate copy of the code and data
The pages for the private code and data can appear anywhere in the logical

Shared Pages Example

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Shared Pages Example

Structure of the Page Table

• Memory structures for paging can get huge using straight

• Consider a 32-bit logical address space as on modern computers

• Page size of 4 KB (212)
• Page table would have 1 million entries
• If each entry is 4 bytes -> 4 MB of physical address space / memory for

page table alone
• That amount of memory used to cost a lot
• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging
• Hashed Page Tables
• Inverted Page Tables

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Structure of the Page Table

Memory structures for paging can get huge using straight-forward methods

bit logical address space as on modern computers

table would have 1 million entries (232 / 212)
> 4 MB of physical address space / memory for

That amount of memory used to cost a lot
t want to allocate that contiguously in main memory

Hierarchical Page Tables

• Break up the logical address space into multiple

page tables

• A simple technique is a two-level page table

• We then page the page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hierarchical Page Tables

Break up the logical address space into multiple

level page table

Two-Level Page

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Level Page-Table Scheme

Two

• A logical address (on 32-bit machine with 1K page size) is divided into:
• a page number consisting of 22 bits
• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided into:
• a 12-bit page number
• a 10-bit page offset

• Thus, a logical address is as follows:

where p1 is an index into the outer page table, and

the page of the inner page table

• Known as forward-mapped page table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Two-Level Paging Example

bit machine with 1K page size) is divided into:
a page number consisting of 22 bits

the page table is paged, the page number is further divided into:

is an index into the outer page table, and p2 is the displacement within

mapped page table

Address-Translation Scheme

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Translation Scheme

64-bit Logical Address Space

• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)
• Then page table has 252 entries
• If two level scheme, inner page tables could be
• Address would look like

• Outer page table has 242 entries or 244

• One solution is to add a 2nd outer page table

• But in the following example the 2nd outer page table is still 2

• And possibly 4 memory access to get to one physical memory location

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

bit Logical Address Space

level paging scheme not sufficient

If two level scheme, inner page tables could be 210 4-byte entries

44 bytes

outer page table

outer page table is still 234 bytes in size

And possibly 4 memory access to get to one physical memory location

Three-level Paging Scheme

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

level Paging Scheme

Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

• This page table contains a chain of elements hashing to the same location

• Each element contains

(1) the virtual page number

(2) the value of the mapped page frame

(3) a pointer to the next element

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hashed Page Tables

The virtual page number is hashed into a page table

This page table contains a chain of elements hashing to the same location

2) the value of the mapped page frame

Hashed Page Tables

• Virtual page numbers are compared in this chain searching for a match

• If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables

• Similar to hashed but each entry refers to several pages (such as 16) rather than 1

• Especially useful for sparse address spaces (where memory references are non

contiguous and scattered)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hashed Page Tables

page numbers are compared in this chain searching for a match

If a match is found, the corresponding physical frame is extracted

clustered page tables

Similar to hashed but each entry refers to several pages (such as 16) rather than 1

address spaces (where memory references are non-

Hashed Page Table

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hashed Page Table

Inverted Page Table
• Rather than each process having a page table and keeping track of all possible

logical pages, track all physical pages

• One entry for each real page of memory

• Entry consists of the virtual address of the page

location, with information about the process that owns that page

• Decreases memory needed to store each page table,

to search the table when a page reference occurs

• Use hash table to limit the search to one —

• TLB can accelerate access
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Inverted Page Table
Rather than each process having a page table and keeping track of all possible

the virtual address of the page stored in that real memory

location, with information about the process that owns that page

to store each page table, but increases time needed

to search the table when a page reference occurs

— or at most a few — page-table entries

Inverted Page Table Architecture

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Inverted Page Table Architecture

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

