
UNIT

MEMORY MANAGEMENT

UNIT IV

MEMORY MANAGEMENT

MEMORY MANAGEMENT

Memory management
strategies
• Background

• Swapping

• Contiguous Memory Allocation

• Segmentation

• Paging

• Structure of Page Table

Virtual Memory Management
•

•

•

•

•

•

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

MEMORY MANAGEMENT

Virtual Memory Management
Background

Demand paging

Copy on write

Page replacement algorithms

Allocation of frames

Thrashing.

Background

• Program must be brought (from disk) into memory
to be run

• Main memory and registers are only storage CPU can access directly

• Memory unit only sees a stream of addresses + read requests, or address + data

and write requests

• Register access in one CPU clock (or less)

• Main memory can take many cycles, causing a

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct operation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Background

brought (from disk) into memory and placed within a process for it

Main memory and registers are only storage CPU can access directly

stream of addresses + read requests, or address + data

Main memory can take many cycles, causing a stall

sits between main memory and CPU registers

Protection of memory required to ensure correct operation

Base and Limit Registers

• A pair of base and limit registers define the logical address space

• CPU must check every memory access generated in user mode to be sure it is

between base and limit for that user

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Base and Limit Registers

define the logical address space

CPU must check every memory access generated in user mode to be sure it is

Hardware Address Protection

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hardware Address Protection

Address Binding

• Programs on disk, ready to be brought into memory to execute form an
• Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at 0000

• Further, addresses represented in different ways at different stages of a program

• Source code addresses usually symbolic

• Compiled code addresses bind to relocatable addresses

• i.e. “14 bytes from beginning of this module

• Linker or loader will bind relocatable addresses to absolute addresses i.e. 74014

• Each binding maps one address space

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Address Binding

Programs on disk, ready to be brought into memory to execute form an input queue
Without support, must be loaded into address 0000

Inconvenient to have first user process physical address always at 0000

Further, addresses represented in different ways at different stages of a program’s life

addresses usually symbolic

to relocatable addresses

14 bytes from beginning of this module”

will bind relocatable addresses to absolute addresses i.e. 74014

maps one address space to another

Binding of Instructions and

Address binding of instructions and data to memory addresses can happen

different stages

• Compile time: If memory location known a priori,

generated; must recompile code if starting location changes

• Load time: Must generate relocatable code

at compile time

• Execution time: Binding delayed until run time if the process can be moved

during its execution from one memory segment to another

• Need hardware support for address maps (e.g., base and limit

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Binding of Instructions and
Data to Memory

Address binding of instructions and data to memory addresses can happen at three

: If memory location known a priori, absolute code can be

generated; must recompile code if starting location changes

relocatable code if memory location is not known

: Binding delayed until run time if the process can be moved

during its execution from one memory segment to another

Need hardware support for address maps (e.g., base and limit registers)

Multistep Processing
of a User Program

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Logical vs. Physical Address Space

• The concept of a logical address space that is bound to a separate

address space is central to proper memory management

• Logical address – generated by the CPU; also referred to as

• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in

address-binding schemes; logical (virtual) and physical addresses

execution-time address-binding scheme

• Logical address space is the set of all logical addresses generated by a program

• Physical address space is the set of all physical addresses generated by a program
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Logical vs. Physical Address Space

The concept of a logical address space that is bound to a separate physical

is central to proper memory management

generated by the CPU; also referred to as virtual address

address seen by the memory unit

same in compile-time and load-time

binding schemes; logical (virtual) and physical addresses differ in

is the set of all logical addresses generated by a program

is the set of all physical addresses generated by a program

Memory

• Hardware device that at run time maps virtual to physical address

• To start, consider simple scheme where the value in the relocation register is

added to every address generated by a user process at the time it is sent to

memory
• Base register now called relocation register
• MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses

addresses
• Execution-time binding occurs when reference is made to location in memory
• Logical address bound to physical addresses

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Memory-Management Unit (MMU)

maps virtual to physical address

To start, consider simple scheme where the value in the relocation register is

added to every address generated by a user process at the time it is sent to

relocation register
DOS on Intel 80x86 used 4 relocation registers

addresses; it never sees the real physical

time binding occurs when reference is made to location in memory
Logical address bound to physical addresses

Dynamic relocation using

 Routine is not loaded until it is called
 Better memory-space utilization; unused

routine is never loaded
 All routines kept on disk in relocatable load

format
 Useful when large amounts of code are

needed to handle infrequently occurring
cases

 No special support from the operating
system is required
 Implemented through program design
 OS can help by providing libraries to

implement dynamic loading

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Dynamic relocation using
a relocation register

; unused

All routines kept on disk in relocatable load

Implemented through program design
OS can help by providing libraries to

• Static linking – system libraries and program code combined by the loader into the

binary program image

• Dynamic linking –linking postponed until execution time

• Small piece of code, stub, used to locate the appropriate memory

routine

• Stub replaces itself with the address of the routine, and executes the routine

• Operating system checks if routine is in processes

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Dynamic Linking

system libraries and program code combined by the loader into the

linking postponed until execution time

, used to locate the appropriate memory-resident library

Stub replaces itself with the address of the routine, and executes the routine

Operating system checks if routine is in processes’ memory address

Dynamic linking is particularly useful for libraries

• A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution

• Backing store – fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images

• Roll out, roll in – swapping variant used for priority

algorithms; lower-priority process is swapped out so higher

be loaded and executed

• Major part of swap time is transfer time

proportional to the amount of memory swapped

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Swapping

temporarily out of memory to a backing store, and

then brought back into memory for continued execution

fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images

swapping variant used for priority-based scheduling

priority process is swapped out so higher-priority process can

transfer time; total transfer time is directly

to the amount of memory swapped

• System maintains a ready queue of ready
images on disk

• Does the swapped out process need to swap back in to same physical addresses?

• Depends on address binding method
• Plus consider pending I/O to / from process memory space

• Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and

Windows)

• Swapping normally disabled

• Started if more than threshold amount of memory allocated

• Disabled again once memory demand reduced below threshold
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Swapping (Cont.)

of ready-to-run processes which have memory

Does the swapped out process need to swap back in to same physical addresses?

Plus consider pending I/O to / from process memory space

Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and

Started if more than threshold amount of memory allocated

Disabled again once memory demand reduced below threshold

Schematic View of Swapping

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Schematic View of Swapping

• If next processes to be put on CPU is not in memory, need to swap out a process and
swap in target process

• Context switch time can then be very high

• 100MB process swapping to hard disk with transfer rate of 50MB/sec
• Swap out time of 2000 ms
• Plus swap in of same sized process
• Total context switch swapping component time of 4000ms (4 seconds)

• Can reduce if reduce size of memory swapped

really being used
• System calls to inform OS of memory use via

release_memory()
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Context Switch Time
including Swapping

If next processes to be put on CPU is not in memory, need to swap out a process and

very high

100MB process swapping to hard disk with transfer rate of 50MB/sec

Total context switch swapping component time of 4000ms (4 seconds)

if reduce size of memory swapped – by knowing how much memory

System calls to inform OS of memory use via request_memory() and

Context Switch Time and
Swapping (Cont.)

• Other constraints as well on swapping

• Pending I/O – can’t swap out as I/O would occur to wrong process

• Or always transfer I/O to kernel space, then to I/O device

• Known as double buffering, adds overhead

• Standard swapping not used in modern operating systems

• But modified version common

• Swap only when free memory extremely low

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Context Switch Time and
Swapping (Cont.)

can’t swap out as I/O would occur to wrong process

Or always transfer I/O to kernel space, then to I/O device

, adds overhead

Standard swapping not used in modern operating systems

Swap only when free memory extremely low

Mobile Systems
• Not typically supported

• Flash memory based
• Small amount of space
• Limited number of write cycles
• Poor throughput between flash memory and CPU on mobile platform

• Instead use other methods to free memory if low

• iOS asks apps to voluntarily relinquish allocated memory
• Read-only data thrown out and reloaded from flash if needed
• Failure to free can result in termination

• Android terminates apps if low free memory, but first writes

for fast restart
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Swapping on
Mobile Systems

Poor throughput between flash memory and CPU on mobile platform

Instead use other methods to free memory if low

apps to voluntarily relinquish allocated memory
only data thrown out and reloaded from flash if needed

Failure to free can result in termination

Android terminates apps if low free memory, but first writes application state to flash

Contiguous Allocation

• Main memory must support both OS and user processes

• Limited resource, must allocate efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions

• Resident operating system, usually held in low memory with interrupt

vector

• User processes then held in high memory

• Each process contained in single contiguous section of memory

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Contiguous Allocation

Main memory must support both OS and user processes

Limited resource, must allocate efficiently

Contiguous allocation is one early method

partitions:

Resident operating system, usually held in low memory with interrupt

User processes then held in high memory

Each process contained in single contiguous section of memory

Contiguous Allocation (Cont.)

• Relocation registers used to protect user processes from each other, and from

changing operating-system code and data

• Base register contains value of smallest physical address

• Limit register contains range of logical addresses

must be less than the limit register

• MMU maps logical address dynamically

• Can then allow actions such as kernel code being

changing size

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Contiguous Allocation (Cont.)

Relocation registers used to protect user processes from each other, and from

system code and data

Base register contains value of smallest physical address

Limit register contains range of logical addresses – each logical address

must be less than the limit register

dynamically

Can then allow actions such as kernel code being transient and kernel

Hardware Support for Relocation

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Hardware Support for Relocation
and Limit Registers

Multiple

• Degree of multiprogramming limited by number of partitions

• Variable-partition sizes for efficiency (sized to a given process’ needs)

• Hole – block of available memory; holes of various size are scattered

throughout memory

• When a process arrives, it is allocated memory from a hole large enough to

accommodate it

• Process exiting frees its partition, adjacent free partitions combined

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multiple-partition allocation

Degree of multiprogramming limited by number of partitions

sizes for efficiency (sized to a given process’ needs)

block of available memory; holes of various size are scattered

When a process arrives, it is allocated memory from a hole large enough to

Process exiting frees its partition, adjacent free partitions combined

Multiple

• Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multiple-partition allocation

Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

Dynamic Storage

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must search entire list,

unless ordered by size

• Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list

• Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Dynamic Storage-Allocation
Problem

hole that is big enough

hole that is big enough; must search entire list,

Produces the smallest leftover hole

hole; must also search entire list

from a list of free holes?

fit in terms of speed and storage utilization

• External Fragmentation – total memory space exists to satisfy a request, but it

is not contiguous

• Internal Fragmentation – allocated memory may be slightly larger than

requested memory; this size difference is memory internal to a partition, but not

being used

• First fit analysis reveals that given N blocks allocated, 0.5

fragmentation

• 1/3 may be unusable -> 50-percent rule

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Fragmentation

total memory space exists to satisfy a request, but it

allocated memory may be slightly larger than

requested memory; this size difference is memory internal to a partition, but not

blocks allocated, 0.5 N blocks lost to

percent rule

Fragmentation (Cont.)

• Reduce external fragmentation by compaction

• Shuffle memory contents to place all free memory together in one large block

• Compaction is possible only if relocation is dynamic, and is done at execution

time

• I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation problems

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Fragmentation (Cont.)

compaction

Shuffle memory contents to place all free memory together in one large block

if relocation is dynamic, and is done at execution

Latch job in memory while it is involved in I/O

Now consider that backing store has same fragmentation problems

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

