
Design Patterns for Mobile Devices

 Creational patterns: How you create objects.

 Structural patterns: How you compose objects.

 Behavioral patterns: How you coordinate object interactions.

Design patterns usually deal with objects. They present a solution to a

reoccurring problem that an object shows and help eradicate design-specific

problems. In other words, they represent challenges, other developers already

faced and prevent you from reinventing the wheel by showing you proven ways

to solve those problems.

Creational Patterns

 Builder

 Dependency Injection

 Singleton

 Factory

Structural Patterns

 Adapter

 Facade

 Decorator

 Composite

Behavioral Patterns

 Command

 Observer

 Strategy

 State

Creational Patterns

“When I need a particularly complex object, how do I get an instance of it?” –

Future You

Future You hopes the answer isn’t “Just copy and paste the same code every time

you need an instance of this object“. Instead, Creational patterns make object

instantiation straightforward and repeatable.

Builder

At a certain restaurant, you create your own sandwich: you choose the bread,

ingredients and condiments you’d like on your sandwich from a checklist on a

slip of paper. Even though the checklist instructs you to build your own sandwich,

you only fill out the form and hand it over the counter. You don’t build the

sandwich, just customize and consume it. :]

Similarly, the Builder pattern simplifies the creation of objects, like slicing bread

and stacking pickles, from its representation, a yummy sandwich. Thus, the same

construction process can create objects of the same class with different

properties.

In Android, an example of the Builder pattern is AlertDialog.Builder:

AlertDialog.Builder(this)

 .setTitle("Sandwich Dialog")

 .setMessage("Please use the spicy mustard.")

 .setNegativeButton("No thanks") { dialogInterface, i ->

 // "No thanks" action

 }

 .setPositiveButton("OK") { dialogInterface, i ->

 // "OK" action

 }

 .show()

This builder proceeds step-by-step and lets you specify only the parts

of AlertDialog that you need to specify. Take a look at the AlertDialog.Builder

documentation. You’ll see there are quite a few commands to choose from when

building your alert.

The code block above produces the following alert:

https://developer.android.com/reference/android/app/AlertDialog.Builder.html
https://developer.android.com/reference/android/app/AlertDialog.Builder.html
https://koenig-media.raywenderlich.com/uploads/2021/02/Screen-Shot-2021-02-02-at-22.24.24-e1612308752161.png?__hstc=149040233.0433641cc570ed801ea4a093148d491b.1682923475103.1682923475103.1682923475103.1%26__hssc=149040233.1.1682923475104%26__hsfp=2089710868

A different set of choices would result in a completely different sandwich– er,

alert. :]

Dependency Injection

Dependency injection is like moving into a furnished apartment. Everything

you need is already there. You don’t have to wait for furniture delivery or follow

pages of IKEA instructions to put together a Borgsjö bookshelf.

In software terms, dependency injection has you provide any required objects to

instantiate a new object. This new object doesn’t need to construct or customize

the objects themselves.

In Android, you might find you need to access the same complex objects from

various points in your app, such as a network client, image loader

or SharedPreferences for local storage. You can inject these objects into your

activities and fragments and access them right away.

Currently, there are three main libraries for dependency injection: Dagger

‘2’, Dagger Hilt, and Koin. Let’s take a look at an example with Dagger. In it you

annotate a class with @Module, and populate it with @Provides methods like:

@Moduleclass AppModule(private val app: Application) {

 @Provides

 @Singleton

 fun provideApplication(): Application = app

 @Provides

 @Singleton

https://www.raywenderlich.com/265010-getting-started-with-dagger?__hstc=149040233.0433641cc570ed801ea4a093148d491b.1682923475103.1682923475103.1682923475103.1&__hssc=149040233.1.1682923475104&__hsfp=2089710868
https://www.raywenderlich.com/265010-getting-started-with-dagger?__hstc=149040233.0433641cc570ed801ea4a093148d491b.1682923475103.1682923475103.1682923475103.1&__hssc=149040233.1.1682923475104&__hsfp=2089710868
https://www.raywenderlich.com/11277584-dependency-injection-with-hilt-fundamentals?__hstc=149040233.0433641cc570ed801ea4a093148d491b.1682923475103.1682923475103.1682923475103.1&__hssc=149040233.1.1682923475104&__hsfp=2089710868
https://www.raywenderlich.com/7042416-dependency-injection-with-koin?__hstc=149040233.0433641cc570ed801ea4a093148d491b.1682923475103.1682923475103.1682923475103.1&__hssc=149040233.1.1682923475104&__hsfp=2089710868

 fun provideSharedPreferences(app: Application): SharedPreferences {

 return app.getSharedPreferences("prefs", Context.MODE_PRIVATE)

 }

}

The module above creates and configures all required objects. As an additional

best practice in larger apps, you could create multiple modules separated by

function.

Then, you make a Component interface to list your modules and the classes

you’ll inject:

@Singleton@Component(modules = [AppModule::class])interface

AppComponent {

 fun inject(activity: MainActivity)

 // ...

}

The component ties together where the dependencies are coming from, the

modules, and where they’re going to, the injection points.

Finally, you use the @Inject annotation to request the dependency wherever you

need it, along with lateinit to initialize a non-nullable property after you create

the containing object:

@Inject lateinit var sharedPreferences: SharedPreferences

As an example, you could use this in your MainActivity and then use local

storage, without the Activity needing to know how the SharedPreferences object

came to be.

Admittedly, this is a simplified overview, but you can read the Dagger

documentation for more implementation details. You can also click the links

above in the mentioned libraries for in-depth tutorials for each topic.

This pattern may seem complicated and magical at first, but it can help simplify

your activities and fragments.

Singleton

The Singleton pattern specifies that only a single instance of a class should exist

with a global access point. This pattern works well when modeling real-world

objects with only one instance. For example, if you have an object that makes

network or database connections, having more than one instance of the project

may cause problems and mix data. That’s why in some scenarios you want to

restrict the creation of more than one instance.

The Kotlin object keyword declares a singleton without needing to specify a

static instance like in other languages:

http://google.github.io/dagger/
http://google.github.io/dagger/

object ExampleSingleton {

 fun exampleMethod() {

 // ...

 }

}

When you need to access members of the singleton object, you make a call like

this:

ExampleSingleton.exampleMethod()

Behind the scenes, an INSTANCE static field backs the Kotlin object. So, if you

need to use a Kotlin object from Java code, you modify the call like this:

ExampleSingleton.INSTANCE.exampleMethod();

By using object, you’ll know you’re using the same instance of that class

throughout your app.

The Singleton is probably the most straightforward pattern to understand

initially but can be dangerously easy to overuse and abuse. Since it’s accessible

from multiple objects, the singleton can undergo unexpected side effects that are

difficult to track down, which is exactly what Future You doesn’t want to deal

with. It’s important to understand the pattern, but other design patterns may be

safer and easier to maintain.

Factory

As the name suggests, Factory takes care of all the object creational logic. In this

pattern, a factory class controls which object to instantiate. Factory pattern

comes in handy when dealing with many common objects. You can use it where

you might not want to specify a concrete class.

Take a look at the code below for a better understanding:

// 1interface HostingPackageInterface {

 fun getServices(): List<String>

}

// 2enum class HostingPackageType {

 STANDARD,

 PREMIUM

}

// 3class StandardHostingPackage : HostingPackageInterface {

 override fun getServices(): List<String> {

 return ...

 }

}

// 4class PremiumHostingPackage : HostingPackageInterface {

 override fun getServices(): List<String> {

 return ...

 }

}

// 5object HostingPackageFactory {

 // 6

 fun getHostingFrom(type: HostingPackageType): HostingPackageInterface {

 return when (type) {

 HostingPackageType.STANDARD -> {

 StandardHostingPackage()

 }

 HostingPackageType.PREMIUM -> {

 PremiumHostingPackage()

 }

 }

 }

}

Here’s a walk through the code:

1. This is a basic interface for all the hosting plans.

2. This enum specifies all the hosting package types.

3. StandardHostingPackage conforms to the interface and implements the

required method to list all the services.

4. PremiumHostingPackage conforms to the interface and implements the

required method to list all the services.

5. HostingPackageFactory is a singleton class with a helper method.

6. getHostingFrom inside HostingPackageFactory is responsible for creating

all the objects.

You can use it like this:

val standardPackage =

HostingPackageFactory.getHostingFrom(HostingPackageType.STANDARD)

It helps to keep all object creation in one class. If used inappropriately, a Factory

class can get bloated due to excessive objects. Testing can also become difficult

as the factory class itself is responsible for all the objects.

Structural Patterns

“So, when I open this class, how will I remember what’s it doing and how it’s put

together?” – Future You

Future You will undoubtedly appreciate the Structural Patterns you used to

organize the guts of your classes and objects into familiar arrangements that

perform typical tasks. Adapter and Facade are two commonly-seen patterns in

Android.

Adapter

A famous scene in the movie Apollo 13 features a team of engineers tasked with

fitting a square peg into a round hole. This, metaphorically, is the role of an

adapter. In software terms, this pattern lets two incompatible classes work

together by converting a class’s interface into the interface the client expects.

https://youtu.be/1cYzkyXp0jg

Consider your app’s business logic. It might be a Product or a User or Tribble. It’s

the square peg. Meanwhile, a RecyclerView is the same basic object across all

Android apps. It’s the round hole.

In this situation, you can use a subclass of RecyclerView.Adapter and implement

the required methods to make everything work:

class TribbleAdapter(private val tribbles: List<Tribble>) :

RecyclerView.Adapter<TribbleViewHolder>() {

 override fun onCreateViewHolder(viewGroup: ViewGroup, i: Int):

TribbleViewHolder {

 val inflater = LayoutInflater.from(viewGroup.context)

 val view = inflater.inflate(R.layout.row_tribble, viewGroup, false)

 return TribbleViewHolder(view)

 }

 override fun onBindViewHolder(viewHolder: TribbleViewHolder, itemIndex:

Int) {

 viewHolder.bind(tribbles[itemIndex])

 }

 override fun getItemCount() = tribbles.size

}

RecyclerView doesn’t know what a Tribble is, as it’s never seen a single episode

of Star Trek, not even the new movies. :] Instead, it’s the adapter’s job to handle

the data and send the bind command to the correct ViewHolder.

Facade

The Facade pattern provides a higher-level interface that makes a set of other

interfaces easier to use. The following diagram illustrates this idea in more detail:

If your Activity needs a list of books, it should be able to ask a single object for

that list without understanding the inner workings of your local storage, cache

and API client. Beyond keeping your Activities and Fragments code clean and

concise, this lets Future You make any required changes to the API

implementation without impacting the Activity.

Square’s Retrofit is an open-source Android library that helps you implement the

Facade pattern. You create an interface to provide API data to client classes like

so:

interface BooksApi {

 @GET("books")

 fun listBooks(): Call<List<Book>>

http://square.github.io/retrofit/
https://koenig-media.raywenderlich.com/uploads/2021/02/facade.png?__hstc=149040233.0433641cc570ed801ea4a093148d491b.1682923475103.1682923475103.1682923475103.1%26__hssc=149040233.1.1682923475104%26__hsfp=2089710868

}

The client needs to call listBooks() to receive a list of Book objects in the callback.

It’s nice and clean. For all it knows, you could have an army of Tribbles

assembling the list and sending it back via transporter beam. :]

This lets you make all types of customizations underneath without affecting the

client. For example, you can specify a customized JSON deserializer that the

Activity has no clue about:

val retrofit = Retrofit.Builder()

 .baseUrl("http://www.myexampleurl.com")

 .addConverterFactory(GsonConverterFactory.create())

 .build()

val api = retrofit.create<BooksApi>(BooksApi::class.java)

Notice the use of GsonConverterFactory, working behind the scenes as a JSON

deserializer. With Retrofit, you can further customize operations

with Interceptor and OkHttpClient to control caching and logging behavior

without the client knowing what’s going on.

The less each object knows about what’s going on behind the scenes, the easier

it’ll be for Future You to manage changes in the app.

Decorator

The Decorator pattern dynamically attaches additional responsibilities to an

object to extended its functionality at runtime. Take a look at the example below:

//1interface Salad {

 fun getIngredient(): String

}

//2class PlainSalad : Salad {

 override fun getIngredient(): String {

 return "Arugula & Lettuce"

 }

}

//3open class SaladDecorator(protected var salad: Salad) : Salad {

 override fun getIngredient(): String {

 return salad.getIngredient()

 }

}

//4class Cucumber(salad: Salad) : SaladDecorator(salad) {

 override fun getIngredient(): String {

 return salad.getIngredient() + ", Cucumber"

 }

}

//5class Carrot(salad: Salad) : SaladDecorator(salad) {

 override fun getIngredient(): String {

 return salad.getIngredient() + ", Carrot"

 }

}

Here’s what the above code defines:

1. A Salad interface helps with knowing the ingredients.

2. Every salad needs a base. This base is Arugula & Lettuce thus, PlainSalad.

3. A SaladDecorator helps add more toppings to the PlainSalad.

4. Cumcumber inherts from SaladDecorator.

5. Carrot inherts from SaladDecorator.

By using the SaladDecorator class, you can extend your salad easily without

having to change PlainSalad. You can also remove or add any salad decorator on

runtime. Here’s how you use it:

val cucumberSalad = Cucumber(Carrot(PlainSalad()))

print(cucumberSalad.getIngredient()) // Arugula & Lettuce, Carrot,

Cucumberval carrotSalad = Carrot(PlainSalad())

print(carrotSalad.getIngredient()) // Arugula & Lettuce, Carrot

Composite

You use the Composite pattern when you want to represent a tree-like structure

consisting of uniform objects. A Composite pattern can have two types of objects:

composite and leaf. A composite object can have further objects, whereas a leaf

object is the last object.

Take a look at the following code to understand it better:

//1interface Entity {

 fun getEntityName(): String

}

//2class Team(private val name: String) : Entity {

 override fun getEntityName(): String {

 return name

 }

}

//3class Raywenderlich(private val name: String) : Entity {

 private val teamList = arrayListOf<Entity>()

 override fun getEntityName(): String {

 return name + ", " + teamList.map { it.getEntityName() }.joinToString(", ")

 }

 fun addTeamMember(member: Entity) {

 teamList.add(member)

 }

}

In the code above you have:

1. Component, an interface Entity in Composite pattern.

2. A Team class implements an Entity. It’s a Leaf.

3. Raywenderlich also implements an Entity interface. It’s a Composite.

Logically and technically the organization, in this case Raywenderlich, adds an

Entity to the Team. Here’s how you use it:

val composite = Raywenderlich("Ray")val ericTeamComposite =

Raywenderlich("Eric")val aaqib = Team("Aaqib")val vijay = Team("Vijay")

ericTeamComposite.addTeamMember(aaqib)

ericTeamComposite.addTeamMember(vijay)

composite.addTeamMember(ericTeamComposite)

print(composite.getEntityName()) // Ray, Eric, Aaqib, Vijay

Behavioral Patterns

“So… how do I tell which class is responsible for what?” – Future You

Behavioral Patterns let you assign responsibility for different app functions.

Future You can use them to navigate the project’s structure and architecture.

These patterns can vary in scope, from the relationship between two objects to

your app’s entire architecture. Often, developers use several behavioral patterns

together in the same app.

Command

When you order some Saag Paneer at an Indian restaurant, you don’t know

which cook will prepare your dish. You just give your order to the waiter, who

posts the order in the kitchen for the next available cook.

Similarly, the Command pattern lets you issue requests without knowing the

receiver. You encapsulate a request as an object and send it off. Deciding how to

complete the request is an entirely separate mechanism.

Greenrobot’s EventBus is a popular Android framework that supports this

pattern in the following manner:

https://github.com/greenrobot/EventBus

An Event is a command-style object that’s triggered by user input, server data or

pretty much anything else in your app. You can create specific subclasses which

carry data as well:

class MySpecificEvent { /* Additional fields if needed */ }

After defining your event, you obtain an instance of EventBus and register an

object as a subscriber. For example, if you register an Activity you’ll have:

override fun onStart() {

 super.onStart()

 EventBus.getDefault().register(this)

}

override fun onStop() {

 super.onStop()

 EventBus.getDefault().unregister(this)

https://koenig-media.raywenderlich.com/uploads/2021/02/eventbus.png?__hstc=149040233.0433641cc570ed801ea4a093148d491b.1682923475103.1682923475103.1682923475103.1%26__hssc=149040233.1.1682923475104%26__hsfp=2089710868

}

Now that the object is a subscriber, tell it what type of event to subscribe to and

what it should do when it receives one:

@Subscribe(threadMode = ThreadMode.MAIN)fun onEvent(event:

MySpecificEvent?) {

 /* Do something */

}

Finally, create and post one of those events based on your criteria:

EventBus.getDefault().post(MySpecificEvent())

Since so much of this pattern works its magic at run-time, Future You might have

a little trouble tracing this pattern unless you have good test coverage. Still, a

well-designed flow of commands balances out the readability and should be easy

to follow later.

Observer

The Observer pattern defines a one-to-many dependency between objects.

When one object changes state, its dependents get a notification and updates

automatically.

This pattern is versatile. You can use it for operations of indeterminate time,

such as API calls. You can also use it to respond to user input.

It was originally popularized by the RxAndroid framework, also known

as Reactive Android. This library lets you implement this pattern throughout

your app:

apiService.getData(someData)

 .subscribeOn(Schedulers.io())

 .observeOn(AndroidSchedulers.mainThread())

 .subscribe (/* an Observer */)

In short, you define Observable objects that will emit values. These values can

emit all at once, as a continuous stream or at any rate and duration.

Subscriber objects will listen for these values and react to them as they arrive.

For example, you can open a subscription when you make an API call, listen to

the server’s response and react accordingly.

More recently Android also introduced a native way to implement this pattern

through LiveData. You can learn more about this topic here.

Strategy

You use a Strategy pattern when you have multiple objects of the same nature

with different functionalities. For a better understanding, take a look at the

following code:

// 1interface TransportTypeStrategy {

 fun travelMode(): String

}

https://github.com/ReactiveX/RxAndroid
https://www.raywenderlich.com/192258/screencast-android-architecture-components-livedata?__hstc=149040233.0433641cc570ed801ea4a093148d491b.1682923475103.1682923475103.1682923475103.1&__hssc=149040233.1.1682923475104&__hsfp=2089710868

// 2class Car : TransportTypeStrategy {

 override fun travelMode(): String {

 return "Road"

 }

}

class Ship : TransportTypeStrategy {

 override fun travelMode(): String {

 return "Sea"

 }

}

class Aeroplane : TransportTypeStrategy {

 override fun travelMode(): String {

 return "Air"

 }

}

// 3class TravellingClient(var strategy: TransportTypeStrategy) {

 fun update(strategy: TransportTypeStrategy) {

 this.strategy = strategy

 }

 fun howToTravel(): String {

 return "Travel by ${strategy.travelMode()}"

 }

}

Here’s a code breakdown:

1. A TransportTypeStrategy interface has a common type for other

strategies so it can be interchanged at runtime.

2. All the concrete classes conform to TransportTypeStrategy.

3. TravellingClient composes strategy and uses its functionalities inside the

functions exposed to the client side.

Here’s how you use it:

val travelClient = TravellingClient(Aeroplane())

print(travelClient.howToTravel()) // Travel by Air// Change the Strategy to Ship

travelClient.update(Ship())

print(travelClient.howToTravel()) // Travel by Sea

State

In the State pattern, the state of an object alters its behavior accordingly when

the internal state of the object changes. Take a look at the following snippets:

// 1interface PrinterState {

 fun print()

}

// 2class Ready : PrinterState {

 override fun print() {

 print("Printed Successfully.")

 }

}

// 3class NoInk : PrinterState {

 override fun print() {

 print("Printer doesn't have ink.")

 }

}

// 4class Printer() {

 private val noInk = NoInk()

 private val ready = Ready()

 private var state: PrinterState

 private var ink = 2

 init {

 state = ready

 }

 private fun setPrinterState(state: PrinterState) {

 this.state = state

 }

 // 5

 fun startPrinting() {

 ink--

 if (ink >= 0) {

 setPrinterState(ready)

 } else {

 setPrinterState(noInk)

 }

 state.print()

 }

 // 6

 fun installInk() {

 ink = 2

 print("Ink installed.")

 }

}

Here’s a code breakdown:

1. PrinterState defines the states of a printer.

2. Ready is a concrete class implementing PrinterState to define a ready

state of the printer.

3. NoInk is a concrete class implementing PrinterState to define that the

printer has no ink.

4. Printer handler does all the printing.

5. startPrinting starts printing.

6. installInk installs ink.

Here’s how you use it:

val printing = Printer()

printing.startPrinting() // Printed Successfully.

printing.startPrinting() // Printed Successfully.

printing.startPrinting() // Printer doesn't have ink.

printing.installInk() // Ink installed.

printing.startPrinting() // Printed Successfully.

	Creational Patterns
	Builder
	Dependency Injection
	Singleton
	Factory

	Structural Patterns
	Adapter
	Facade
	Decorator
	Composite

	Behavioral Patterns
	Command
	Observer
	Strategy
	State

