
Media app architecture overview 

bookmark_border 

This section explains how to separate a media player app into a media controller 

(for the UI) and a media session (for the actual player). It describes two media 

app architectures: a client/server design that works well for audio apps and a 

single-activity design for video players. It also shows how to make media apps 

respond to hardware controls and cooperate with other apps that use the audio 

output stream. 

Player and UI 

A multimedia application that plays audio or video usually has two parts: 

 A player that takes digital media in and renders it as video and/or audio 

 A UI with transport controls to run the player and optionally display the 

player's state 

 

In Android you can build your own player from the ground up, or you can choose 

from these options: 

 The MediaPlayer class provides the basic functionality for a bare-bones 

player that supports the most common audio/video formats and data sources. 

 ExoPlayer is an open source library that's built on top of lower-level 

media framework components like MediaCodec and AudioTrack. ExoPlayer 

supports high-performance features like DASH which are not available 

in MediaPlayer. You can customize the ExoPlayer code, making it easy to add 

new components. ExoPlayer can only be used with Android version 4.1 and 

higher. 

Media session and media controller 

https://developer.android.com/guide/topics/media/mediaplayer
https://developer.android.com/guide/topics/media/exoplayer


While the APIs for the UI and player can be arbitrary, the nature of the 

interaction between the two pieces is basically the same for all media player 

apps. The Android framework defines two classes, a media session and a media 

controller, that impose a well-defined structure for building a media player app. 

The media session and media controller communicate with each other using 

predefined callbacks that correspond to standard player actions (play, pause, 

stop, etc.), as well as extensible custom calls that you use to define special 

behaviors unique to your app. 

 

Media session 

A media session is responsible for all communication with the player. It hides the 

player's API from the rest of your app. The player is only called from the media 

session that controls it. 

The session maintains a representation of the player's state (playing/paused) 

and information about what is playing. A session can receive callbacks from one 

or more media controllers. This makes it possible for your player to be 

controlled by your app's UI as well as companion devices running Wear OS and 

Android Auto. The logic that responds to callbacks must be consistent. The 

response to a MediaSession callback should be the same no matter which client 

app initiated the callback. 

Media controller 

https://developer.android.com/guide/topics/media-apps/audio-app/mediasession-callbacks


A media controller isolates your UI. Your UI code only communicates with the 

media controller, not the player itself. The media controller translates transport 

control actions into callbacks to the media session. It also receives callbacks from 

the media session whenever the session state changes. This provides a 

mechanism to automatically update the associated UI. A media controller can 

only connect to one media session at a time. 

When you use a media controller and a media session, you can deploy different 

interfaces and/or players at runtime. You can change your app's appearance 

and/or performance independently depending on the capabilities of the device 

on which it’s running. 

Video apps versus audio apps 

When playing a video, your eyes and ears are both engaged. When playing audio, 

you are listening, but you can also work with a different app at the same time. 

There's a different design for each use case. 

Video app 

A video app needs a window for viewing content. For this reason a video app is 

usually implemented as a single Android activity. The screen on which the video 

appears is part of the activity. 

 

Audio app 



An audio player does not always need to have its UI visible. Once it begins to play 

audio, the player can run as a background task. The user can switch to another 

app and work while continuing to listen. 

To implement this design in Android, you can build an audio app using two 

components: an activity for the UI and a service for the player. If the user 

switches to another app, the service can run in the background. By factoring the 

two parts of an audio app into separate components, each can run more 

efficiently on its own. A UI is usually short-lived compared to a player, which 

may run for a long time without a UI. 

 

The support library provides two classes to implement this client/server 

approach: MediaBrowserService and MediaBrowser. The service component is 

implemented as a subclass of MediaBrowserService containing the media session 

and its player. The activity with the UI and the media controller should include 

a MediaBrowser, which communicates with the MediaBrowserService. 

Using MediaBrowserService makes it easy for companion devices (like Android 

Auto and Wear) to discover your app, connect to it, browse for content, and 

control playback, without accessing your app's UI activity at all. In fact, there can 

be multiple apps connected to the same MediaBrowserService at the same time, 

each app with its own MediaController. An app that offers 

a MediaBrowserService should be able to handle multiple simultaneous 

connections. 



Media apps and the Android audio infrastructure 

A well-designed media app should "play well together" with other apps that play 

audio. It should be prepared to share the phone and cooperate with other apps 

on your device that use audio. It should also respond to hardware controls on the 

device. 

 

All of this behavior is described in Controlling Audio Output. 

The media-compat library 

The media-compat library contains classes that are helpful for building apps that 

play audio and video. These classes are compatible with devices running Android 

2.3 (API level 9) and higher. They also work with other Android features to 

create a comfortable, familiar Android experience. 

The recommended implementation of media sessions and media controllers are 

the classes MediaSessionCompat and MediaControllerCompat, which are defined 

in the media-compat support library. They replace earlier versions of the 

classes MediaSession and MediaController that were introduced in Android 5.0 

(API level 21). The compat classes offer the same functionality but make it easier 

to develop your app because you only need to write to one API. The library takes 

care of backward compatibility by translating media session methods to the 

equivalent methods on older platform versions when available. 

https://developer.android.com/guide/topics/media-apps/volume-and-earphones
https://developer.android.com/reference/android/support/v4/media/session/package-summary
https://developer.android.com/reference/android/support/v4/media/session/MediaSessionCompat
https://developer.android.com/reference/android/support/v4/media/session/MediaControllerCompat
https://developer.android.com/topic/libraries/support-library/features.html#media-playback


If you already have a working app that's using the older classes, we recommend 

updating to the compat classes. When you use the compat versions you can 

remove all calls to registerMediaButtonReceiver() and any methods 

from RemoteControlClient. 

Measuring performance 

In Android 8.0 (API level 26) and later, the getMetrics() method is available for 

some media classes. It returns a PersistableBundle object containing 

configuration and performance information, expressed as a map of attributes 

and values. The getMetrics() method is defined for these media classes: 

 MediaPlayer.getMetrics() 

 MediaRecorder.getMetrics() 

 MediaCodec.getMetrics() 

 MediaExtractor.getMetrics() 

Metrics are collected separately for each instance and persist for the lifetime of 

the instance. If no metrics are available the method returns null. The actual 

metrics returned depend on the class. 

 

https://developer.android.com/reference/android/media/AudioManager#registerMediaButtonEventReceiver(android.content.ComponentName)
https://developer.android.com/reference/android/media/RemoteControlClient
https://developer.android.com/reference/android/os/PersistableBundle
https://developer.android.com/reference/android/media/MediaPlayer#getMetrics()
https://developer.android.com/reference/android/media/MediaRecorder#getMetrics()
https://developer.android.com/reference/android/media/MediaCodec#getMetrics()
https://developer.android.com/reference/android/media/MediaExtractor#getMetrics()

	Media app architecture overview
	Player and UI
	Media session and media controller
	Media session
	Media controller

	Video apps versus audio apps
	Video app
	Audio app

	Media apps and the Android audio infrastructure
	The media-compat library
	Measuring performance


