
Android - UI Layouts

The basic building block for user interface is a View object which is created from the

View class and occupies a rectangular area on the screen and is responsible for

drawing and event handling. View is the base class for widgets, which are used to

create interactive UI components like buttons, text fields, etc.

The ViewGroup is a subclass of View and provides invisible container that hold other

Views or other ViewGroups and define their layout properties.

At third level we have different layouts which are subclasses of ViewGroup class and

a typical layout defines the visual structure for an Android user interface and can be

created either at run time using View/ViewGroup objects or you can declare your

layout using simple XML file main_layout.xml which is located in the res/layout

folder of your project.

Layout params

This tutorial is more about creating your GUI based on layouts defined in XML file.

A layout may contain any type of widgets such as buttons, labels, textboxes, and so on.

Following is a simple example of XML file having LinearLayout −

<?xml version="1.0" encoding="utf-8"?><LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="This is a Button" />

 <!-- More GUI components go here -->

 </LinearLayout>

Once your layout has created, you can load the layout resource from your application

code, in your Activity.onCreate() callback implementation as shown below −

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);}

Android Layout Types

There are number of Layouts provided by Android which you will use in almost all

the Android applications to provide different view, look and feel.

Sr.No Layout & Description

1 Linear Layout

LinearLayout is a view group that aligns all children in a single direction,

vertically or horizontally.

https://www.tutorialspoint.com/android/android_linear_layout.htm

2 Relative Layout

RelativeLayout is a view group that displays child views in relative positions.

3 Table Layout

TableLayout is a view that groups views into rows and columns.

4 Absolute Layout

AbsoluteLayout enables you to specify the exact location of its children.

5 Frame Layout

The FrameLayout is a placeholder on screen that you can use to display a

single view.

6 List View

ListView is a view group that displays a list of scrollable items.

7 Grid View

GridView is a ViewGroup that displays items in a two-dimensional, scrollable

grid.

Layout Attributes

Each layout has a set of attributes which define the visual properties of that layout.

There are few common attributes among all the layouts and their are other attributes

which are specific to that layout. Following are common attributes and will be applied

to all the layouts:

Sr.No Attribute & Description

1
android:id

This is the ID which uniquely identifies the view.

https://www.tutorialspoint.com/android/android_relative_layout.htm
https://www.tutorialspoint.com/android/android_table_layout.htm
https://www.tutorialspoint.com/android/android_absolute_layout.htm
https://www.tutorialspoint.com/android/android_frame_layout.htm
https://www.tutorialspoint.com/android/android_list_view.htm
https://www.tutorialspoint.com/android/android_grid_view.htm

2
android:layout_width

This is the width of the layout.

3
android:layout_height

This is the height of the layout

4
android:layout_marginTop

This is the extra space on the top side of the layout.

5
android:layout_marginBottom

This is the extra space on the bottom side of the layout.

6
android:layout_marginLeft

This is the extra space on the left side of the layout.

7
android:layout_marginRight

This is the extra space on the right side of the layout.

8
android:layout_gravity

This specifies how child Views are positioned.

9
android:layout_weight

This specifies how much of the extra space in the layout should be allocated to

the View.

10
android:layout_x

This specifies the x-coordinate of the layout.

11
android:layout_y

This specifies the y-coordinate of the layout.

12
android:layout_width

This is the width of the layout.

13
android:paddingLeft

This is the left padding filled for the layout.

14
android:paddingRight

This is the right padding filled for the layout.

15
android:paddingTop

This is the top padding filled for the layout.

16
android:paddingBottom

This is the bottom padding filled for the layout.

Here width and height are the dimension of the layout/view which can be specified in

terms of dp (Density-independent Pixels), sp (Scale-independent Pixels), pt (Points

which is 1/72 of an inch), px(Pixels), mm (Millimeters) and finally in (inches).

You can specify width and height with exact measurements but more often, you will

use one of these constants to set the width or height −

android:layout_width=wrap_content tells your view to size itself to the

dimensions required by its content.

android:layout_width=fill_parent tells your view to become as big as its parent

view.

Gravity attribute plays important role in positioning the view object and it can take

one or more (separated by '|') of the following constant values.

Constant Value Description

top 0x30 Push object to the top of its container, not changing

its size.

bottom 0x50 Push object to the bottom of its container, not

changing its size.

left 0x03 Push object to the left of its container, not changing

its size.

right 0x05 Push object to the right of its container, not

changing its size.

center_vertical 0x10 Place object in the vertical center of its container,

not changing its size.

fill_vertical 0x70 Grow the vertical size of the object if needed so it

completely fills its container.

center_horizontal 0x01 Place object in the horizontal center of its container,

not changing its size.

fill_horizontal 0x07 Grow the horizontal size of the object if needed so it

completely fills its container.

center 0x11 Place the object in the center of its container in both

the vertical and horizontal axis, not changing its

size.

fill 0x77 Grow the horizontal and vertical size of the object if

needed so it completely fills its container.

clip_vertical 0x80 Additional option that can be set to have the top

and/or bottom edges of the child clipped to its

container's bounds. The clip will be based on the

vertical gravity: a top gravity will clip the bottom

edge, a bottom gravity will clip the top edge, and

neither will clip both edges.

clip_horizontal 0x08 Additional option that can be set to have the left

and/or right edges of the child clipped to its

container's bounds. The clip will be based on the

horizontal gravity: a left gravity will clip the right

edge, a right gravity will clip the left edge, and

neither will clip both edges.

start 0x00800003 Push object to the beginning of its container, not

changing its size.

end 0x00800005 Push object to the end of its container, not changing

its size.

View Identification

A view object may have a unique ID assigned to it which will identify the View

uniquely within the tree. The syntax for an ID, inside an XML tag is −

android:id="@+id/my_button"

Following is a brief description of @ and + signs −

The at-symbol (@) at the beginning of the string indicates that the XML parser

should parse and expand the rest of the ID string and identify it as an ID

resource.

The plus-symbol (+) means that this is a new resource name that must be created

and added to our resources. To create an instance of the view object and capture

it from the layout, use the following −

Button myButton = (Button) findViewById(R.id.my_button);

Android - UI Controls

Input controls are the interactive components in your app's user

interface. Android provides a wide variety of controls you can use in

your UI, such as buttons, text fields, seek bars, check box, zoom

buttons, toggle buttons, and many more.

UI Elements

A View is an object that draws something on the screen that the user can interact with

and a ViewGroup is an object that holds other View (and ViewGroup) objects in order

to define the layout of the user interface.

You define your layout in an XML file which offers a human-readable structure for

the layout, similar to HTML. For example, a simple vertical layout with a text view

and a button looks like this −

<?xml version="1.0" encoding="utf-8"?><LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a Button" /></LinearLayout>

Android UI Controls

There are number of UI controls provided by Android that allow you to build the

graphical user interface for your app.

Sr.No. UI Control & Description

1 TextView

This control is used to display text to the user.

2 EditText

EditText is a predefined subclass of TextView that includes rich editing

capabilities.

3 AutoCompleteTextView

The AutoCompleteTextView is a view that is similar to EditText, except that

it shows a list of completion suggestions automatically while the user is

typing.

4 Button

A push-button that can be pressed, or clicked, by the user to perform an

action.

5 ImageButton

https://www.tutorialspoint.com/android/android_textview_control.htm
https://www.tutorialspoint.com/android/android_edittext_control.htm
https://www.tutorialspoint.com/android/android_autocompletetextview_control.htm
https://www.tutorialspoint.com/android/android_button_control.htm
https://www.tutorialspoint.com/android/android_imagebutton_control.htm

An ImageButton is an AbsoluteLayout which enables you to specify the exact

location of its children. This shows a button with an image (instead of text)

that can be pressed or clicked by the user.

6 CheckBox

An on/off switch that can be toggled by the user. You should use check box

when presenting users with a group of selectable options that are not mutually

exclusive.

7 ToggleButton

An on/off button with a light indicator.

8 RadioButton

The RadioButton has two states: either checked or unchecked.

9 RadioGroup

A RadioGroup is used to group together one or more RadioButtons.

10 ProgressBar

The ProgressBar view provides visual feedback about some ongoing tasks,

such as when you are performing a task in the background.

11 Spinner

A drop-down list that allows users to select one value from a set.

12 TimePicker

The TimePicker view enables users to select a time of the day, in either 24-

hour mode or AM/PM mode.

13 DatePicker

The DatePicker view enables users to select a date of the day.

https://www.tutorialspoint.com/android/android_checkbox_control.htm
https://www.tutorialspoint.com/android/android_togglebutton_control.htm
https://www.tutorialspoint.com/android/android_radiobutton_control.htm
https://www.tutorialspoint.com/android/android_radiogroup_control.htm
https://www.tutorialspoint.com/android/android_progressbar.htm
https://www.tutorialspoint.com/android/android_spinner_control.htm
https://www.tutorialspoint.com/android/android_timepicker_control.htm
https://www.tutorialspoint.com/android/android_datepicker_control.htm

Create UI Controls

Input controls are the interactive components in your app's user interface. Android

provides a wide variety of controls you can use in your UI, such as buttons, text fields,

seek bars, check box, zoom buttons, toggle buttons, and many more.

As explained in previous chapter, a view object may have a unique ID assigned to it

which will identify the View uniquely within the tree. The syntax for an ID, inside an

XML tag is −

android:id="@+id/text_id"

To create a UI Control/View/Widget you will have to define a view/widget in the

layout file and assign it a unique ID as follows −

<?xml version="1.0" encoding="utf-8"?><LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text_id"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="I am a TextView" /></LinearLayout>

Then finally create an instance of the Control object and capture it from the layout,

use the following −

TextView myText = (TextView) findViewById(R.id.text_id);

	Android - UI Layouts
	Layout params
	Android Layout Types
	Layout Attributes
	View Identification

	Android - UI Controls
	UI Elements
	Android UI Controls
	Create UI Controls

