
ACTIVITIES IN ANDROID

Introduction to activities

bookmark_border

The Activity class is a crucial component of an Android app, and the way activities are

launched and put together is a fundamental part of the platform's application model.

Unlike programming paradigms in which apps are launched with a main() method, the

Android system initiates code in an Activity instance by invoking specific callback

methods that correspond to specific stages of its lifecycle.

This document introduces the concept of activities, and then provides some lightweight

guidance about how to work with them. For additional information about best practices

in architecting your app, see Guide to App Architecture.

The concept of activities

The mobile-app experience differs from its desktop counterpart in that a user's

interaction with the app doesn't always begin in the same place. Instead, the user journey

often begins non-deterministically. For instance, if you open an email app from your

home screen, you might see a list of emails. By contrast, if you are using a social media

app that then launches your email app, you might go directly to the email app's screen for

composing an email.

The Activity class is designed to facilitate this paradigm. When one app invokes another,

the calling app invokes an activity in the other app, rather than the app as an atomic

whole. In this way, the activity serves as the entry point for an app's interaction with the

user. You implement an activity as a subclass of the Activity class.

An activity provides the window in which the app draws its UI. This window typically fills

the screen, but may be smaller than the screen and float on top of other windows.

Generally, one activity implements one screen in an app. For instance, one of an app’s

activities may implement a Preferences screen, while another activity implements a Select

Photo screen.

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/topic/libraries/architecture/guide
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity

Most apps contain multiple screens, which means they comprise multiple activities.

Typically, one activity in an app is specified as the main activity, which is the first screen

to appear when the user launches the app. Each activity can then start another activity in

order to perform different actions. For example, the main activity in a simple e-mail app

may provide the screen that shows an e-mail inbox. From there, the main activity might

launch other activities that provide screens for tasks like writing e-mails and opening

individual e-mails.

Although activities work together to form a cohesive user experience in an app, each

activity is only loosely bound to the other activities; there are usually minimal

dependencies among the activities in an app. In fact, activities often start up activities

belonging to other apps. For example, a browser app might launch the Share activity of a

social-media app.

To use activities in your app, you must register information about them in the app’s

manifest, and you must manage activity lifecycles appropriately. The rest of this

document introduces these subjects.

Configuring the manifest

For your app to be able to use activities, you must declare the activities, and certain of

their attributes, in the manifest.

Declare activities

To declare your activity, open your manifest file and add an <activity> element as a child

of the <application> element. For example:

<manifest ... >

 <application ... >

 <activity android:name=".ExampleActivity" />

 ...

 </application ... >

 ...

</manifest >

https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/application-element

The only required attribute for this element is android:name, which specifies the class

name of the activity. You can also add attributes that define activity characteristics such

as label, icon, or UI theme. For more information about these and other attributes, see

the <activity> element reference documentation.

Note: After you publish your app, you should not change activity names. If you do, you

might break some functionality, such as app shortcuts. For more information on changes

to avoid after publishing, see Things That Cannot Change.

Declare intent filters

Intent filters are a very powerful feature of the Android platform. They provide the ability

to launch an activity based not only on an explicit request, but also an implicit one. For

example, an explicit request might tell the system to “Start the Send Email activity in the

Gmail app". By contrast, an implicit request tells the system to “Start a Send Email screen

in any activity that can do the job." When the system UI asks a user which app to use in

performing a task, that’s an intent filter at work.

You can take advantage of this feature by declaring an <intent-filter> attribute in

the <activity> element. The definition of this element includes an <action> element and,

optionally, a <category> element and/or a <data> element. These elements combine to

specify the type of intent to which your activity can respond. For example, the following

code snippet shows how to configure an activity that sends text data, and receives

requests from other activities to do so:

<activity android:name=".ExampleActivity" android:icon="@drawable/app_icon">

 <intent-filter>

 <action android:name="android.intent.action.SEND" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="text/plain" />

 </intent-filter>

</activity>

https://developer.android.com/guide/topics/manifest/activity-element#nm
https://developer.android.com/guide/topics/manifest/activity-element
http://android-developers.blogspot.com/2011/06/things-that-cannot-change.html
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/topics/manifest/intent-filter-element
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/action-element
https://developer.android.com/guide/topics/manifest/category-element
https://developer.android.com/guide/topics/manifest/data-element

In this example, the <action> element specifies that this activity sends data. Declaring

the <category> element as DEFAULT enables the activity to receive launch requests.

The <data> element specifies the type of data that this activity can send. The following

code snippet shows how to call the activity described above:

KotlinJava

val sendIntent = Intent().apply {

 action = Intent.ACTION_SEND

 type = "text/plain"

 putExtra(Intent.EXTRA_TEXT, textMessage)

}

startActivity(sendIntent)

If you intend for your app to be self-contained and not allow other apps to activate its

activities, you don't need any other intent filters. Activities that you don't want to make

available to other applications should have no intent filters, and you can start them

yourself using explicit intents. For more information about how your activities can

respond to intents, see Intents and Intent Filters.

Declare permissions

You can use the manifest's <activity> tag to control which apps can start a particular

activity. A parent activity cannot launch a child activity unless both activities have the

same permissions in their manifest. If you declare a <uses-permission> element for a

parent activity, each child activity must have a matching <uses-permission> element.

For example, if your app wants to use a hypothetical app named SocialApp to share a post

on social media, SocialApp itself must define the permission that an app calling it must

have:

<manifest>

<activity android:name="...."

 android:permission=”com.google.socialapp.permission.SHARE_POST”

https://developer.android.com/guide/topics/manifest/action-element
https://developer.android.com/guide/topics/manifest/category-element
https://developer.android.com/guide/topics/manifest/data-element
https://developer.android.com/guide/components/activities/intro-activities#kotlin
https://developer.android.com/guide/components/activities/intro-activities#kotlin
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/uses-permission-element

/>

Then, to be allowed to call SocialApp, your app must match the permission set in

SocialApp's manifest:

<manifest>

 <uses-permission android:name="com.google.socialapp.permission.SHARE_POST" />

</manifest>

For more information on permissions and security in general, see Security and

Permissions.

Managing the activity lifecycle

Over the course of its lifetime, an activity goes through a number of states. You use a

series of callbacks to handle transitions between states. The following sections introduce

these callbacks.

onCreate()

You must implement this callback, which fires when the system creates your activity.

Your implementation should initialize the essential components of your activity: For

example, your app should create views and bind data to lists here. Most importantly, this

is where you must call setContentView() to define the layout for the activity's user

interface.

When onCreate() finishes, the next callback is always onStart().

onStart()

As onCreate() exits, the activity enters the Started state, and the activity becomes visible

to the user. This callback contains what amounts to the activity’s final preparations for

coming to the foreground and becoming interactive.

onResume()

https://developer.android.com/guide/topics/security/security
https://developer.android.com/guide/topics/security/security
https://developer.android.com/reference/android/app/Activity#setContentView(android.view.View)
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onStart()
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)

The system invokes this callback just before the activity starts interacting with the user.

At this point, the activity is at the top of the activity stack, and captures all user input.

Most of an app’s core functionality is implemented in the onResume() method.

The onPause() callback always follows onResume().

onPause()

The system calls onPause() when the activity loses focus and enters a Paused state. This

state occurs when, for example, the user taps the Back or Recents button. When the

system calls onPause() for your activity, it technically means your activity is still partially

visible, but most often is an indication that the user is leaving the activity, and the activity

will soon enter the Stopped or Resumed state.

An activity in the Paused state may continue to update the UI if the user is expecting the

UI to update. Examples of such an activity include one showing a navigation map screen

or a media player playing. Even if such activities lose focus, the user expects their UI to

continue updating.

You should not use onPause() to save application or user data, make network calls, or

execute database transactions. For information about saving data, see Saving and

restoring activity state.

Once onPause() finishes executing, the next callback is either onStop() or onResume(),

depending on what happens after the activity enters the Paused state.

onStop()

The system calls onStop() when the activity is no longer visible to the user. This may

happen because the activity is being destroyed, a new activity is starting, or an existing

activity is entering a Resumed state and is covering the stopped activity. In all of these

cases, the stopped activity is no longer visible at all.

The next callback that the system calls is either onRestart(), if the activity is coming back

to interact with the user, or by onDestroy() if this activity is completely terminating.

onRestart()

https://developer.android.com/reference/android/app/Activity#onResume()
https://developer.android.com/reference/android/app/Activity#onPause()
https://developer.android.com/reference/android/app/Activity#onResume()
https://developer.android.com/reference/android/app/Activity#onPause()
https://developer.android.com/reference/android/app/Activity#onPause()
https://developer.android.com/reference/android/app/Activity#onPause()
https://developer.android.com/guide/components/activities/activity-lifecycle#saras
https://developer.android.com/guide/components/activities/activity-lifecycle#saras
https://developer.android.com/reference/android/app/Activity#onPause()
https://developer.android.com/reference/android/app/Activity#onStop()
https://developer.android.com/reference/android/app/Activity#onResume()
https://developer.android.com/reference/android/app/Activity#onStop()
https://developer.android.com/reference/android/app/Activity#onRestart()
https://developer.android.com/reference/android/app/Activity#onDestroy()

The system invokes this callback when an activity in the Stopped state is about to

restart. onRestart() restores the state of the activity from the time that it was stopped.

This callback is always followed by onStart().

onDestroy()

The system invokes this callback before an activity is destroyed.

This callback is the final one that the activity receives. onDestroy() is usually

implemented to ensure that all of an activity’s resources are released when the activity,

or the process containing it, is destroyed.

This section provides only an introduction to this topic. For a more detailed treatment of

the activity lifecycle and its callbacks, see The Activity Lifecycle.

Android Layout and Views – Types and Examples

We offer you a brighter future with FREE online courses Start Now!!

Welcome back to DataFlair Android Tutorial series. In this article, we’ll learn

about Android Layout and Views. Let us begin with what is a View and then move to

Layout.

What is Android View?

A View is a simple building block of a user interface. It is a small rectangular box that can

be TextView, EditText, or even a button. It occupies the area on the screen in a rectangular

area and is responsible for drawing and event handling. View is a superclass of all the

graphical user interface components.

Why and How to use the View in Android?

Now you might be thinking what is the use of a View. So, the use of a view is to draw

content on the screen of the user’s Android device. A view can be easily implemented in

https://developer.android.com/reference/android/app/Activity#onRestart()
https://developer.android.com/reference/android/app/Activity#onStart()
https://developer.android.com/reference/android/app/Activity#onDestroy()
https://developer.android.com/guide/components/activities/activity-lifecycle
https://data-flair.training/
https://data-flair.training/blogs/wp-content/uploads/sites/2/2020/05/Android-Layout-Views.jpg

an Application using the java code. Its creation is more easy in the XML layout file of the

project. Like, the project for hello world that we had made initially.

If you have not tried it, refer DataFlair hello world app in Android.

Types of Android Views

Another thing that might now come to your mind must be, “what are the available types

of view in Android that we can use?”

For that, we’ll see all these types one by one as follows:

 TextView

 EditText

 Button

 Image Button

 Date Picker

 RadioButton

 CheckBox buttons

 Image View

And there are some more components. Learn more about Android UI Controls.

Another important feature in Android is ViewGroup which is as follows.

What is Android View Group?

A View Group is a subclass of the ViewClass and can be considered as a superclass of

Layouts. It provides an invisible container to hold the views or layouts. ViewGroup

instances and views work together as a container for Layouts. To understand in simpler

words it can be understood as a special view that can hold other views that are often

known as a child view.

Following are certain commonly used subclasses for ViewGroup:

 LinearLayout

 RelativeLayout

 FrameLayout

 GridView

 ListView

Here is how Views and ViewGroups are linked:

https://data-flair.training/blogs/create-android-app/
https://data-flair.training/blogs/android-ui-controls/

Now we’ll move towards the Android layouts:

What is Android Layout?

Layout basically refers to the arrangement of elements on a page these elements are likely

to be images, texts or styles. These are a part of Android Jetpack. They define the

structure of android user interface in the app, like in an activity. All elements in the layout

are built with the help of Views and ViewGroups. These layouts can have various widgets

like buttons, labels, textboxes, and many others.

We can define a Layout as follows:

<?xml version="1.0" encoding="utf-8"?>

 <LinearLayout

 android:id="@+id/layout2"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_weight="1"

 android:background="#8ED3EB"

 android:gravity="center"

 android:orientation="vertical" >

http://web.cs.wpi.edu/~emmanuel/courses/cs4518/C17/slides/lecture03.pdf
https://data-flair.training/blogs/wp-content/uploads/sites/2/2020/05/View-groups-Views.jpg

 <TextView

 android:id="@+id/textView4"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_marginLeft="10dp"

 android:layout_marginTop="-40dp"

 android:fontFamily="@font/almendra_bold"

 android:text="This is a TextView" />

 </LinearLayout>

Attributes of Layout in Android

The following are the attributes for customizing a Layout while defining it:

 android:id: It uniquely identifies the Android Layout.

 android:hint: It shows the hint of what to fill inside the EditText.

 android:layout_height: It sets the height of the layout.

 android:layout_width: It sets the width of the layout.

 android:layout_gravity: It sets the position of the child view.

 android:layout_marginTop: It sets the margin of the from the top of the

layout.

 android:layout_marginBottom: It sets the margin of the from the bottom of

the layout.

 android:layout_marginLeft: It sets the margin of the from the left of the

layout.

 android:layout_marginRight: It sets the margin of the from the right of the

layout.

 android:layout_x: It specifies the x coordinates of the layout.

 android:layout_y: It specifies the y coordinates of the layout.

Types of Layouts in Android

Now that we’ve learned about the view and view groups and also somewhat about the

layouts. Subsequently let us see the types of Layouts in Android, that are as follows:

 Linear Layout

 Relative Layout

 Constraint Layout

 Table Layout

 Frame Layout

 List View

 Grid View

 Absolute Layout

 WebView

 ScrollView

These are the types of layouts and out of them we’ll learn about the two very important

layouts:

1. Linear Layout

We use this layout to place the elements in a linear manner. A Linear manner means one

element per line. This layout creates various kinds of forms on Android. In this,

arrangement of the elements is in a top to bottom manner.

https://stackoverflow.com/questions/6674341/how-to-use-scrollview-in-android

This can have two orientations:

a. Vertical Orientation – It is shown above where the widgets such as TextViews, and all

in a vertical manner.

b. Horizontal Orientation – It is shown above where the widgets such as TextViews, and

all in a horizontal manner.

2. Relative Layout

This layout is for specifying the position of the elements in relation to the other elements

that are present there.

In the relative layout, alignment of the position of the elements to the parent container is

possible. To define it in such a way, we write the following:

 android:layout_alignParentTop= “true”

 android:layout_alignParentLeft= “true”

If we write the above code, the element will get aligned on the top left of the parent

container.

If we want to align it with some other element in the same container, it can be defined is

as follows:

 android:layout_alignLeft= “@+id/element_name”

 android:layout_below= “@+id/element_name”

This will align the element below the other element to its left.

Here are the pictorial representations of different layouts-

https://data-flair.training/blogs/wp-content/uploads/sites/2/2020/05/types-of-android-Layouts.jpg

	ACTIVITIES IN ANDROID
	Introduction to activities
	The concept of activities
	Configuring the manifest
	Declare activities
	Declare intent filters
	Declare permissions

	Managing the activity lifecycle
	onCreate()
	onStart()
	onResume()
	onPause()
	onStop()
	onRestart()
	onDestroy()

	Android Layout and Views – Types and Examples
	What is Android View?
	Why and How to use the View in Android?
	Types of Android Views
	What is Android View Group?
	What is Android Layout?
	Attributes of Layout in Android
	Types of Layouts in Android
	1. Linear Layout
	2. Relative Layout

