
 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Session

management

 Session Management in Java - HttpServlet, Cookies, URL

Rewriting

Session Management in Java

This article is aimed to explain about session management in servlets using different
techniques and with example programs.

1. What is a Session?
2. Session Management in Java - Cookies
3. Session in Java Servlet - HttpSession
4. Session Management in Java Servlet - URL Rewriting

5. What is a Session?

HTTP protocol and Web Servers are stateless, what it means is that for web
server every request is a new request to process and they can’t identify if it’s
coming from client that has been sending request previously. But sometimes in
web applications, we should know who the client is and process the request
accordingly. For example, a shopping cart application should know who is
sending the request to add an item and in which cart the item has to be added or
who is sending checkout request so that it can charge the amount to correct
client. Session is a conversional state between client and server and it can
consists of multiple request and response between client and server. Since
HTTP and Web Server both are stateless, the only way to maintain a session is
when some unique information about the session (session id) is passed between
server and client in every request and response. There are several ways through
which we can provide unique identifier in request and response.

1. User Authentication - This is the very common way where we user can
provide authentication credentials from the login page and then we can
pass the authentication information between server and client to maintain
the session. This is not very effective method because it wont work if the
same user is logged in from different browsers.

2. HTML Hidden Field - We can create a unique hidden field in the HTML
and when user starts navigating, we can set its value unique to the user

SNS COLLEGE OF ENGINEERING

(Autonomous)

DEPARTMENT OF CSE -IoT & CYBER SECURITY INCLUDING BCT

https://www.digitalocean.com/community/tutorials/java-session-management-servlet-httpsession-url-rewriting#servlet-session
https://www.digitalocean.com/community/tutorials/java-session-management-servlet-httpsession-url-rewriting#servlet-cookies
https://www.digitalocean.com/community/tutorials/java-session-management-servlet-httpsession-url-rewriting#servlet-httpsession
https://www.digitalocean.com/community/tutorials/java-session-management-servlet-httpsession-url-rewriting#servlet-url-rewriting

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Session

management

and keep track of the session. This method can’t be used with links
because it needs the form to be submitted every time request is made
from client to server with the hidden field. Also it’s not secure because we
can get the hidden field value from the HTML source and use it to hack
the session.

3. URL Rewriting - We can append a session identifier parameter with every
request and response to keep track of the session. This is very tedious
because we need to keep track of this parameter in every response and
make sure it’s not clashing with other parameters.

4. Cookies - Cookies are small piece of information that is sent by web
server in response header and gets stored in the browser cookies. When
client make further request, it adds the cookie to the request header and
we can utilize it to keep track of the session. We can maintain a session
with cookies but if the client disables the cookies, then it won’t work.

5. Session Management API - Session Management API is built on top of
above methods for session tracking. Some of the major disadvantages of
all the above methods are:

• Most of the time we don’t want to only track the session, we have to store
some data into the session that we can use in future requests. This will
require a lot of effort if we try to implement this.

• All the above methods are not complete in themselves, all of them won’t
work in a particular scenario. So we need a solution that can utilize these
methods of session tracking to provide session management in all cases.

That’s why we need Session Management API and J2EE Servlet
technology comes with session management API that we can use.

6. Session Management in Java - Cookies

Cookies are used a lot in web applications to personalize response based on
your choice or to keep track of session. Before moving forward to the Servlet
Session Management API, I would like to show how can we keep track of
session with cookies through a small web application. We will create a dynamic
web application ServletCookieExample with project structure like below image.

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Session

management

Deployment descriptor web.xml
of the web application is:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance"

xmlns="https://java.sun.com/xml/ns/javaee"

xsi:schemaLocation="https://java.sun.com/xml/ns/javaee

https://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" id="WebApp_ID"

version="3.0">

 <display-name>ServletCookieExample</display-name>

 <welcome-file-list>

 <welcome-file>login.html</welcome-file>

 </welcome-file-list>

</web-app>

Welcome page of our application is login.html where we will get authentication
details from user.

<!DOCTYPE html>

<html>

https://journaldev.nyc3.digitaloceanspaces.com/2013/08/Servlet-Cookie-Example-Project.png

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Session

management

<head>

<meta charset="US-ASCII">

<title>Login Page</title>

</head>

<body>

<form action="LoginServlet" method="post">

Username: <input type="text" name="user">

Password: <input type="password" name="pwd">

<input type="submit" value="Login">

</form>

</body>

Session in Java Servlet - HttpSession

Servlet API provides Session management through HttpSession interface. We can get

session from HttpServletRequest object using following methods. HttpSession allows us
to set objects as attributes that can be retrieved in future requests.

1. HttpSession getSession() - This method always returns a HttpSession object. It
returns the session object attached with the request, if the request has no
session attached, then it creates a new session and return it.

2. HttpSession getSession(boolean flag) - This method returns HttpSession
object if request has session else it returns null.

Some of the important methods of HttpSession are:

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Session

management

1. String getId() - Returns a string containing the unique identifier assigned to this
session.

2. Object getAttribute(String name) - Returns the object bound with the specified
name in this session, or null if no object is bound under the name. Some other
methods to work with Session attributes
are getAttributeNames(), removeAttribute(String

name) and setAttribute(String name, Object value).

3. long getCreationTime() - Returns the time when this session was created,
measured in milliseconds since midnight January 1, 1970 GMT. We can get last
accessed time with getLastAccessedTime() method.

4. setMaxInactiveInterval(int interval) - Specifies the time, in seconds, between
client requests before the servlet container will invalidate this session. We can
get session timeout value from getMaxInactiveInterval() method.

5. ServletContext getServletContext() - Returns ServletContext object for the
application.

6. boolean isNew() - Returns true if the client does not yet know about the session
or if the client chooses not to join the session.

7. void invalidate() - Invalidates this session then unbinds any objects bound to it.

Understanding JSESSIONID Cookie

When we use HttpServletRequest getSession() method and it creates a new request, it
creates the new HttpSession object and also add a Cookie to the response object with
name JSESSIONID and value as session id. This cookie is used to identify the
HttpSession object in further requests from client. If the cookies are disabled at client
side and we are using URL rewriting then this method uses the jsessionid value from
the request URL to find the corresponding session. JSESSIONID cookie is used for
session tracking, so we should not use it for our application purposes to avoid any
session related issues. Let’s see example of session management using HttpSession
object. We will create a dynamic web project in Eclipse with servlet context as
ServletHttpSessionExample. The project structure will look like below image.

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Session

management

login.html is same like earlier example
and defined as welcome page for the application in web.xml LoginServlet servlet will
create the session and set attributes that we can use in other resources or in future
requests.

Session Management in Java Servlet - URL Rewriting

As we saw in last section that we can manage a session with HttpSession but if we
disable the cookies in browser, it won’t work because server will not receive the
JSESSIONID cookie from client. Servlet API provides support for URL rewriting that we
can use to manage session in this case. The best part is that from coding point of view,
it’s very easy to use and involves one step - encoding the URL. Another good thing with
Servlet URL Encoding is that it’s a fallback approach and it kicks in only if browser
cookies are disabled. We can encode URL with
HttpServletResponse encodeURL() method and if we have to redirect the request to

another resource and we want to provide session information, we can
use encodeRedirectURL() method. We will create a similar project like above except

that we will use URL rewriting methods to make sure session management works fine

https://journaldev.nyc3.digitaloceanspaces.com/2013/08/Servlet-HttpSession-Example-Project.png

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Session

management

even if cookies are disabled in browser. ServletSessionURLRewriting project structure

in eclipse looks like below image.

https://journaldev.nyc3.digitaloceanspaces.com/2013/08/Servlet-Session-URL-Rewriting-Project.png

