
 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

Form Validation: Date and Time
1. Checking for valid format

2. Checking that input values are within bounds

3. Modular checkDate() function

4. Modular checkTime() function

5. Using these functions for validation

6. Adding HTML5 input validation

7. Adjusting the code for different date formats

8. Checking month endings and leap years

9. References

10.Related Articles - Form Validation

11.User Comments

When capturing information for insertion into a database, or use in
other processing, it's important to control what the user can enter.
Otherwise you can end up with values in the database that have no
relation to reality.

1. Checking for valid format

In this example, the date fields will only accept input that matches
the pattern 'dd/mm/yyyy' (this could just as easily be changed to
'yyyy-mm-dd' or 'mm/dd/yyyy'). The time field will allow input
starting with 'hh:mm' following by an optional 'am' or 'pm'. The
fields can also be empty.

Event DetailsStart Date (dd/mm/yyyy)Start Time (eg.

14:44 or 2:44pm)
Submit

The code behind the form is as follows:

SNS COLLEGE OF ENGINEERING

(Autonomous)

DEPARTMENT OF CSE -IoT & CYBER SECURITY INCLUDING BCT

https://www.the-art-of-web.com/javascript/validate-date/#section_0
https://www.the-art-of-web.com/javascript/validate-date/#section_1
https://www.the-art-of-web.com/javascript/validate-date/#section_2
https://www.the-art-of-web.com/javascript/validate-date/#section_3
https://www.the-art-of-web.com/javascript/validate-date/#section_4
https://www.the-art-of-web.com/javascript/validate-date/#section_5
https://www.the-art-of-web.com/javascript/validate-date/#section_6
https://www.the-art-of-web.com/javascript/validate-date/#section_7
https://www.the-art-of-web.com/javascript/validate-date/#referenes
https://www.the-art-of-web.com/javascript/validate-date/#related
https://www.the-art-of-web.com/javascript/validate-date/#user_comments

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

<script>

 function checkForm(form)

 {

 // regular expression to match required date format

 re = /^\d{1,2}\/\d{1,2}\/\d{4}$/;

 if(form.startdate.value != '' && !form.startdate.value.match(re)) {

 alert("Invalid date format: " + form.startdate.value);

 form.startdate.focus();

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 return false;

 }

 // regular expression to match required time format

 re = /^\d{1,2}:\d{2}([ap]m)?$/;

 if(form.starttime.value != '' && !form.starttime.value.match(re)) {

 alert("Invalid time format: " + form.starttime.value);

 form.starttime.focus();

 return false;

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 }

 alert("All input fields have been validated!");

 return true;

 }

</script>

For each field in the form (first the dates, then the time field), a
check is made as to whether the input is blank. If not, the input is
compared to the regular expression. The expressions use a pre-
defined class \d which represents any numeric character (0-9).

If you wanted to be really finicky the regular expression to match a
date could also be written as:

re = /^[0-3]?[0-9]\/[01]?[0-9]\/[12][90][0-9][0-9]$/

If the input doesn't match the regular expression then an error
message is presented, the routine stops the form from submitting

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

by returning a false value and the focus is moved to the relevant

form field.

If all tests are passed, then a value of true is returned which enables

the form to be submitted.

This routine DOES NOT check that the date or time input values are valid, just that they

match the required format (d/m/y and h:m). Read further for more comprehensive

checking.

2. Checking that input values are within bounds

Once you're in control of the input format, it's a lot easier to check
that the values are actually valid. The function has been improved
now so that the day, month and year values are checked to ensure
that they're in the right ball-bark (ie. 1-31 for the day and 1-12 for
the month). Also the year must be between 1902 and the current
year.

The year limitation would be used if you were asking for a date of
birth or date of some recent event. If you're setting up a calendar of
future events you would check that the year is the current year or
greater.

Event DetailsStart Date (dd/mm/yyyy)Start Time (eg.

14:44 or 2:44pm)
Submit

The code behind the form now is as follows:

<script>

 function checkForm(form)

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 {

 // regular expression to match required date format

 re = /^(\d{1,2})\/(\d{1,2})\/(\d{4})$/;

 if(form.startdate.value != '') {

 if(regs = form.startdate.value.match(re)) {

 // day value between 1 and 31

 if(regs[1] < 1 || regs[1] > 31) {

 alert("Invalid value for day: " + regs[1]);

 form.startdate.focus();

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 return false;

 }

 // month value between 1 and 12

 if(regs[2] < 1 || regs[2] > 12) {

 alert("Invalid value for month: " + regs[2]);

 form.startdate.focus();

 return false;

 }

 // year value between 1902 and 2023

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 if(regs[3] < 1902 || regs[3] > (new Date()).getFullYear()) {

 alert("Invalid value for year: " + regs[3] + " - must be between 1902

and " + (new Date()).getFullYear());

 form.startdate.focus();

 return false;

 }

 } else {

 alert("Invalid date format: " + form.startdate.value);

 form.startdate.focus();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Objects/Date/getFullYear

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 return false;

 }

 }

 // regular expression to match required time format

 re = /^(\d{1,2}):(\d{2})([ap]m)?$/;

 if(form.starttime.value != '') {

 if(regs = form.starttime.value.match(re)) {

 if(regs[3]) {

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 // 12-hour value between 1 and 12

 if(regs[1] < 1 || regs[1] > 12) {

 alert("Invalid value for hours: " + regs[1]);

 form.starttime.focus();

 return false;

 }

 } else {

 // 24-hour value between 0 and 23

 if(regs[1] > 23) {

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 alert("Invalid value for hours: " + regs[1]);

 form.starttime.focus();

 return false;

 }

 }

 // minute value between 0 and 59

 if(regs[2] > 59) {

 alert("Invalid value for minutes: " + regs[2]);

 form.starttime.focus();

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 return false;

 }

 } else {

 alert("Invalid time format: " + form.starttime.value);

 form.starttime.focus();

 return false;

 }

 }

 alert("All input fields have been validated!");

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 return true;

 }

</script>

expand code box

If you're not already familiar with regular expressions, then this
might be getting a bit complicated. Basically, for each of the regular
expression tests, an array is returned holding each component of
the pattern that we've matched.

For example, when the date is checked, the return value, regs, is an

array with elements 1 through 3 containing the day, month and
year components of the input string. For the time check, the array
returned includes the hour (pos 1), minutes (pos 2) and, optionally,
the am/pm string (pos 3).

Each of these values is then tested against an allowed range (days:
1 - 31; months: 1 - 12; years: 1902 - 2023; and so on).

This script only confirms that the input format is correct and that each individual value falls

within its allowed range. It does not check for leap years or invalid dates at the end of short

months.

3. Modular checkDate() function

As we've seen before, creating re-usable functions can significantly
reduce the size of your JavaScript code. These functions can even
be included from an external javascript file so that the browser can

https://www.the-art-of-web.com/javascript/validate-date/#box1

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

cache them, and so the programmer isn't always copying and
pasting.

In this case, we've created a stand-alone functions which will
validate a date field:

 var checkDate = function(field) {

 // Original JavaScript code by Chirp Internet: www.chirpinternet.eu

 // Please acknowledge use of this code by including this header.

 var allowBlank = true;

 var minYear = 1902;

 var maxYear = (new Date()).getFullYear();

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 var errorMsg = "";

 /* regular expression to match required date format */

 re = /^(\d{1,2})\/(\d{1,2})\/(\d{4})$/;

 if(field.value != '') {

 if(regs = field.value.match(re)) {

 if(regs[1] < 1 || regs[1] > 31) {

 errorMsg = "Invalid value for day: " + regs[1];

 } else if(regs[2] < 1 || regs[2] > 12) {

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 errorMsg = "Invalid value for month: " + regs[2];

 } else if(regs[3] < minYear || regs[3] > maxYear) {

 errorMsg = "Invalid value for year: " + regs[3] + " - must be between

" + minYear + " and " + maxYear;

 }

 } else {

 errorMsg = "Invalid date format: " + field.value;

 }

 } else if(!allowBlank) {

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 errorMsg = "Empty date not allowed!";

 }

 if(errorMsg != "") {

 alert(errorMsg);

 field.focus();

 return false;

 }

 return true;

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 };

Dealing with alternative date formats is simple enough:

• To convert to mm/dd/yyyy (US format) just

swap regs[1] and regs[2] in the above code.

• To convert to yyyy-mm-dd (European format) you need to change

the regexp to /^(\d{4})-(\d{1,2})-(\d{1,2})$/ and

swap regs[1] and regs[3].

This is explained again below.

4. Modular checkTime() function

And a function that will validate a time input:

 function checkTime(field)

 {

 // Original JavaScript code by Chirp Internet: www.chirpinternet.eu

 // Please acknowledge use of this code by including this header.

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 var errorMsg = "";

 /* regular expression to match required time format */

 re = /^(\d{1,2}):(\d{2})(:00)?([ap]m)?$/;

 if(field.value != "") {

 if(regs = field.value.match(re)) {

 if(regs[4]) {

 /* 12-hour time format with am/pm */

 if(regs[1] < 1 || regs[1] > 12) {

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 errorMsg = "Invalid value for hours: " + regs[1];

 }

 } else {

 /* 24-hour time format */

 if(regs[1] > 23) {

 errorMsg = "Invalid value for hours: " + regs[1];

 }

 }

 if(!errorMsg && regs[2] > 59) {

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 errorMsg = "Invalid value for minutes: " + regs[2];

 }

 } else {

 errorMsg = "Invalid time format: " + field.value;

 }

 }

 if(errorMsg != "") {

 alert(errorMsg);

 field.focus();

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 return false;

 }

 return true;

 }

5. Using these functions for validation

It's now much easier to see what the main validation function is
doing:

<script>

 function checkForm(form)

 {

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 if(!checkDate(form.startdate)) return false;

 if(!checkTime(form.starttime)) return false;

 return true;

 }

</script>

In each case the value passed to the function is the form field rather
than the field value. The output will be almost identical to the earlier
examples.

In this simple example we can even rewrite the checkForm function

above as:

<script>

 function checkForm(form)

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 {

 return checkDate(form.startdate) && checkTime(form.starttime);

 }

</script>

The associated HTML form would be as follows:

<form method="POST" action="..." onsubmit="return checkForm(this);">

<fieldset>

<legend>Event Details</legend>

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

<label>Start Date: <input type="text" size="12" placeholder="dd/mm/yyyy"

name="startdate"> <small>(dd/mm/yyyy)</small></label>

<label>Start Time: <input type="text" size="12" name="starttime"> <small>(eg.

18:17 or 6:17pm)</small></label>

<p><input type="submit"></p>

</fieldset>

</form>

6. Adding HTML5 input validation

There's now no excuse for having forms without HTML5 form
validation attributes. Notably the pattern and required attributes which

allow the browser to perform it's own validation:

<form method="POST" action="..." onsubmit="return checkForm(this);">

https://www.the-art-of-web.com/html/html5-form-validation/
https://www.the-art-of-web.com/html/html5-form-validation/

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

<fieldset>

<legend>Event Details</legend>

<label>Start Date: <input type="text" size="12" required

pattern="\d{1,2}/\d{1,2}/\d{4}" placeholder="dd/mm/yyyy"

name="startdate"></label>

<label>Start Time: <input type="text" size="12" pattern="\d{1,2}:\d{2}([ap]m)?"

name="starttime"></label>

<p><input type="submit"></p>

</fieldset>

</form>

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

In practice most modern browsers will now use HTML form
validation to preempt any JavaScript validation - with the notable
exception of Safari.

Event DetailsStart Date (dd/mm/yyyy)Start Time (eg.

18:17 or 6:17pm)
Submit

Read more about HTML5 form validation.

7. Adjusting the code for different date formats

Visitors from some countries may find it confusing that we're using
the dd/mm/yyyy date format instead of the American or other

standards. Modifying the code involves only minor changes:

US Date Format MM/DD/YYYY

In the checkDate function above you only need to replace references

to regs[1] with regs[2] and vice-versa to reflect the change in order of

the day and month values.

European Format YYYY-MM-DD

In the checkDate function above you only need to change the regular

expression (re) to /^(\d{4})-(\d{1,2})-(\d{1,2})/ and then replace

references to regs[1] with regs[3] and vice-versa as the year and day

values have now changed position.

8. Checking month endings and leap years

In JavaScript to check for different month lengths, particularly for
February in leap years, you need quite a bit of extra code. I'm not
going to show that here, but you can find a link to get started under
References below.

https://www.the-art-of-web.com/html/html5-form-validation/

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

Instead we're going to make use of Form Validation using Ajax to do
some real-time checking using a server-side PHP script to get a
definitive answer.

Ajax Date ValidationDate of Birth

When you enter a date in the format dd/mm/yyyy the value is sent
via an Ajax call to the server where it is validated using the
PHP checkdate function.

The return value is displayed next to the input field:

Other actions could also be taken such as disabling form submission
until there is a valid date.

The relevant portions of the HTML are as follows:

<script src="/scripts/AjaxRequestXML.js"></script>

<script>

 function callAjax(value, target)

https://www.the-art-of-web.com/javascript/ajax-validate/
https://www.php.net/checkdate
https://www.the-art-of-web.com/scripts/AjaxRequestXML.js

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 {

 if(encodeURIComponent) {

 var params = {

 "value" : value,

 "target" : target

 };

 return (new AjaxRequestXML()).post("/scripts/valid-date.xml", params);

 }

 return false;

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 }

</script>

...

<form ...>

...

<p>Date of Birth: <input id="field_dob" name="dob" onchange="

 if(this.value.match(/^(\d{1,2})\/(\d{1,2})\/(\d{4})$/)) {

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 callAjax(this.value, this.id);

 }

"> <small id="rsp_field_dob"><!-- --></small></p>

...

</form>

The JavaScript onchange event handler simply passes the date input

value to a server-side script valid-date.xml.php where it will be tested.

It then waits for an XML response containing instructions as to what
message to display.

The PHP script valid-date.xml.php simply breaks up the date input

string and passes the values to the built-in checkdate() function -
which presumably knows all about leap years and other strange
features of the Gregorian calendar:

<?PHP

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 include "Chirp/ajaxresponsexml.php";

 if($_POST) {

 $target = trim($_POST['target']);

 $value = trim($_POST['value']);

 } else {

 die("Error: missing POST values");

 }

 $date_is_valid = false;

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 if(preg_match("@(\d{1,2})/(\d{1,2})/(\d{4})@", $value, $regs)) {

 list($tmp, $day, $month, $year) = $regs;

 $date_is_valid = checkdate($month, $day, $year);

 }

 $retval = $date_is_valid ? "date $value is valid" : "date $value is not

valid";

 $xml = new \Chirp\AjaxResponseXML();

 $xml->start();

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

 $xml->command('setcontent', [

 'target' => "rsp_$target",

 'content' => $retval

]);

 if($date_is_valid) {

 $xml->command('setstyle', [

 'target' => "rsp_$target",

 'property' => 'color',

 'value' => 'green'

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

]);

 } else {

 $xml->command('setstyle', [

 'target' => "rsp_$target",

 'property' => 'color',

 'value' => 'red'

]);

 $xml->command('focus', [

 'target' => $target

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

]);

 }

 $xml->command('setstyle', [

 'target' => "form1",

 'property' => 'cursor',

 'value' => 'default'

]);

 $xml->end();

You can copy the code for valid-date.xml.php from the box below:

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

The script ajaxresponsexml.php can be copied below:

Both files need to be saved in the same folder as your HTML page
for the date validation to work - so you have four files in total - the
original HTML file with the
form, AjaxRequestXML.js, ajaxresponsexml.php and valid-date.xml.php.

Similar to this setup from another example:

With Ajax you can make use of more powerful server-side functions
and don't have to include large JavaScript libraries for validating
dates and other values. Just be aware that it means more requests
to the server which can be slower than downloading and running
JavaScript code.

 Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Form Validation:

Date and Time

The AjaxRequest class is a simple one we've created and use on a
number of projects. You can find the details in Web Services using
XMLHttpRequest (Ajax) and related articles.

9. References

• Regular Expression (and String) Methods
• Is it Leap Year?Using Javascript

10. Related Articles - Form Validation

• HTML HTML5 Form Validation Examples
• HTML Validating a checkbox with HTML5
• JAVASCRIPT Preventing Double Form Submission
• JAVASCRIPT Form Validation
• JAVASCRIPT Date and Time
• JAVASCRIPT Password Validation using regular expressions and

HTML5
• JAVASCRIPT A simple modal feedback form with no plugins
• JAVASCRIPT Credit Card numbers
• JAVASCRIPT Tweaking the HTML5 Color Input
• JAVASCRIPT Counting words in a text area
• JAVASCRIPT Allowing the user to toggle password INPUT visibility
• PHP Basic Form Handling in PHP
• PHP Protecting forms using a CAPTCHA
• PHP Measuring password strength
• PHP Creating a CAPTCHA with no Cookies

https://www.the-art-of-web.com/javascript/ajax/
https://www.the-art-of-web.com/javascript/ajax/
https://webreference.com/javascript/
https://www.codeproject.com/Articles/21308/Is-it-Leap-Year-Using-Javascript
https://www.the-art-of-web.com/html/html5-form-validation/
https://www.the-art-of-web.com/html/html5-checkbox-required/
https://www.the-art-of-web.com/javascript/doublesubmit/
https://www.the-art-of-web.com/javascript/validate/
https://www.the-art-of-web.com/javascript/validate-password/
https://www.the-art-of-web.com/javascript/validate-password/
https://www.the-art-of-web.com/javascript/feedback-modal-window/
https://www.the-art-of-web.com/javascript/validate-credit-card-number/
https://www.the-art-of-web.com/javascript/html5-color-input/
https://www.the-art-of-web.com/javascript/count-words-textarea/
https://www.the-art-of-web.com/javascript/login-view-password/
https://www.the-art-of-web.com/php/form-handler/
https://www.the-art-of-web.com/php/captcha/
https://www.the-art-of-web.com/php/password-strength/
https://www.the-art-of-web.com/php/captcha-no-cookie/

