
SNS COLLEGE OF ENGINEERING

(Autonomous) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19EC602- MICROWAVE AND OPTICAL ENGINEERING

UNIT-3 MEASUREMENT OF INSERTION LOSS

- ➢ When a device or network is inserted in The transmission line, part P_r of the input signal power P_i is reflected from the input terminal and the remaining part P_i-P_r which actually enters the network is attenuated due to the non-zero loss of the network. The output signal power P_o is therefore less than P_i.
- Therefore, insertion loss is defined by The difference in the power arriving at the terminating load with and without the network in the circuit.

Since,

$$\frac{P_0}{P_i} = \frac{P_i - P_r}{P_i} * \frac{P_0}{P_i - P_r} ...(1)$$

or

$$10\log\frac{P_0}{P_i} = 10\log\left(1 - \frac{P_r}{P_i}\right) + 10\log\left(\frac{P_0}{P_i - P_r}\right) \quad ...(2)$$

Insertion loss = reflection loss + attenuation loss

Where, by definition

Insertion loss (dB)= 10 log
$$(P_0/P_i)$$
 ...(3)
Reflection loss (dB)= 10 log $\left(1 - \frac{P_r}{P_i}\right) = 10 \log (1 - |\Gamma|^2)$
 $= 10 \log \frac{4S}{(1+S)^2}; S = \frac{1 - |\Gamma|}{1 + |\Gamma|}$...(4)

Attenuation loss (dB) =
$$10 \log \left(\frac{P_0}{P_i - P_r}\right)$$
..(5)

Return loss (dB) = 10 log P_r/P_i = 20log | Γ | ...(6)

For perfect matching , Pr = 0 and the insertion loss and the attenuation loss become the same. The experimental setup for insertion and attenuation loss measurements are shown below in figure 1. The relative power levels are measured by using detectors and a VSWR meter. DC_1 and DC_2 are two identical directional couplers .

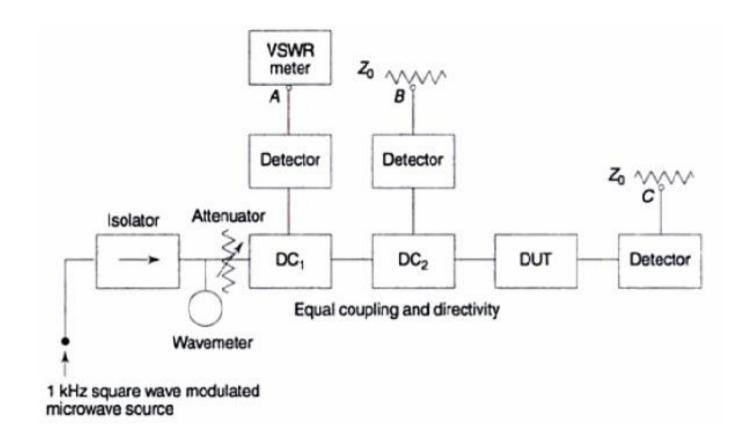


Figure 1 : Insertion loss and attenuation loss measurement setup

