

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

 Introduction to Java Script

In JavaScript, almost "everything" is an object.

• Booleans can be objects (if defined with the new keyword)

• Numbers can be objects (if defined with the new keyword)

• Strings can be objects (if defined with the new keyword)

• Dates are always objects

• Maths are always objects
• Regular expressions are always objects

• Arrays are always objects
• Functions are always objects

• Objects are always objects

All JavaScript values, except primitives, are objects.

JavaScript Primitives

A primitive value is a value that has no properties or methods.

3.14 is a primitive value

A primitive data type is data that has a primitive value.

JavaScript defines 7 types of primitive data types:

Examples

• string
• number
• boolean
• null
• undefined
• symbol
• bigint

SNS COLLEGE OF ENGINEERING

(Autonomous)

DEPARTMENT OF CSE -IoT & CYBER SECURITY INCLUDING BCT

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

Immutable

Primitive values are immutable (they are hardcoded and cannot be changed).

if x = 3.14, you can change the value of x, but you cannot change the value of

3.14.

Value Type Comment

"Hello" string "Hello" is always "Hello"

3.14 number 3.14 is always 3.14

true boolean true is always true

false boolean false is always false

null null (object) null is always null

undefined undefined undefined is always undefined

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

Objects are Variables

JavaScript variables can contain single values:

Example

let person = "John Doe";

JavaScript variables can also contain many values.

Objects are variables too. But objects can contain many values.

Object values are written as name : value pairs (name and value separated by
a colon).

Example

let person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

A JavaScript object is a collection of named values

It is a common practice to declare objects with the const keyword.

Example

const person = {firstName:"John", lastName:"Doe", age:50,

eyeColor:"blue"};

Object Properties

The named values, in JavaScript objects, are called properties.

Property Value

firstName John

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

lastName Doe

age 50

eyeColor blue

Objects written as name value pairs are similar to:

• Associative arrays in PHP

• Dictionaries in Python
• Hash tables in C
• Hash maps in Java

• Hashes in Ruby and Perl

Object Methods

Methods are actions that can be performed on objects.

Object properties can be both primitive values, other objects, and functions.

An object method is an object property containing a function definition.

Property Value

firstName John

lastName Doe

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

age 50

eyeColor blue

fullName function() {return this.firstName + " " + this.lastName;}

JavaScript objects are containers for named values, called properties and
methods.

You will learn more about methods in the next chapters.

Creating a JavaScript Object

With JavaScript, you can define and create your own objects.

There are different ways to create new objects:

• Create a single object, using an object literal.
• Create a single object, with the keyword new.
• Define an object constructor, and then create objects of the constructed

type.

• Create an object using Object.create().

Using an Object Literal

This is the easiest way to create a JavaScript Object.

Using an object literal, you both define and create an object in one statement.

An object literal is a list of name:value pairs (like age:50) inside curly braces
{}.

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

The following example creates a new JavaScript object with four properties:

Example

const person = {firstName:"John", lastName:"Doe", age:50,

eyeColor:"blue"};

Spaces and line breaks are not important. An object definition can span multiple
lines:

This example creates an empty JavaScript object, and then adds 4 properties:

Example

const person = {};

person.firstName = "John";

person.lastName = "Doe";

person.age = 50;

person.eyeColor = "blue";

Using the JavaScript Keyword new

The following example create a new JavaScript object using new Object(), and

then adds 4 properties:

Example

const person = new Object();

person.firstName = "John";

person.lastName = "Doe";

person.age = 50;

person.eyeColor = "blue";

The examples above do exactly the same.

But there is no need to use new Object().

For readability, simplicity and execution speed, use the object literal method.

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

JavaScript Objects are Mutable

Objects are mutable: They are addressed by reference, not by value.

If person is an object, the following statement will not create a copy of person:

const x = person; // Will not create a copy of person.

The object x is not a copy of person. It is person. Both x and person are the
same object.

Any changes to x will also change person, because x and person are the same
object.

Example

const person = {

 firstName:"John",

 lastName:"Doe",

 age:50, eyeColor:"blue"

}

const x = person;

x.age = 10; // Will change both x.age and person.age

JavaScript Events

The change in the state of an object is known as an Event. In html, there are various events

which represents that some activity is performed by the user or by the browser.

When javascript code is included in HTML, js react over these events and allow the

execution. This process of reacting over the events is called Event Handling. Thus, js

handles the HTML events via Event Handlers.

For example, when a user clicks over the browser, add js code, which will execute the task

to be performed on the event.

Some of the HTML events and their event handlers are:

https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/html-tutorial

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

Mouse events:

Event Performed Event Handler Description

click onclick When mouse click on an element

mouseover onmouseover When the cursor of the mouse comes over the element

mouseout onmouseout When the cursor of the mouse leaves an element

mousedown onmousedown When the mouse button is pressed over the element

mouseup onmouseup When the mouse button is released over the element

mousemove onmousemove When the mouse movement takes place.

Keyboard events:

Event Performed Event Handler Description

Keydown & Keyup onkeydown & onkeyup When the user press and then release the key

Form events:

Event Performed Event Handler Description

focus onfocus When the user focuses on an element

submit onsubmit When the user submits the form

blur onblur When the focus is away from a form element

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

change onchange When the user modifies or changes the value of a form element

Window/Document events

Event Performed Event Handler Description

load onload When the browser finishes the loading of the page

unload onunload When the visitor leaves the current webpage, the browser unloads it

resize onresize When the visitor resizes the window of the browser

Let's discuss some examples over events and their handlers.

Click Event

1. <html>

2. <head> Javascript Events </head>

3. <body>

4. <script language="Javascript" type="text/Javascript">

5. <!--

6. function clickevent()

7. {

8. document.write("This is JavaTpoint");

9. }

10. //-->

11. </script>

12. <form>

13. <input type="button" onclick="clickevent()" value="Who's this?"/>

14. </form>

15. </body>

16. </html>

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

MouseOver Event

1. <html>

2. <head>

3. <h1> Javascript Events </h1>

4. </head>

5. <body>

6. <script language="Javascript" type="text/Javascript">

7. <!--

8. function mouseoverevent()

9. {

10. alert("This is JavaTpoint");

11. }

12. //-->

13. </script>

14. <p onmouseover="mouseoverevent()"> Keep cursor over me</p>

15. </body>

16. </html>

Focus Event

1. <html>

2. <head> Javascript Events</head>

3. <body>

4. <h2> Enter something here</h2>

5. <input type="text" id="input1" onfocus="focusevent()"/>

6. <script>

7. <!--

8. function focusevent()

9. {

10. document.getElementById("input1").style.background=" aqua";

11. }

12. //-->

13. </script>

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

14. </body>

15. </html>

Keydown Event

1. <html>

2. <head> Javascript Events</head>

3. <body>

4. <h2> Enter something here</h2>

5. <input type="text" id="input1" onkeydown="keydownevent()"/>

6. <script>

7. <!--

8. function keydownevent()

9. {

10. document.getElementById("input1");

11. alert("Pressed a key");

12. }

13. //-->

14. </script>

15. </body>

16. </html>

Load event

1. <html>

2. <head>Javascript Events</head>

3. </br>

4. <body onload="window.alert('Page successfully loaded');">

5. <script>

6. <!--

7. document.write("The page is loaded successfully");

8. //-->

9. </script>

10. </body>

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

11. </html>

JavaScript Strings

 Previous Page

Next Page

The String object lets you work with a series of characters; it wraps Javascript's string
primitive data type with a number of helper methods.

As JavaScript automatically converts between string primitives and String objects, you
can call any of the helper methods of the String object on a string primitive.

Syntax
Use the following syntax to create a String object −

var val = new String(string);

The String parameter is a series of characters that has been properly encoded.

String Properties

Here is a list of the properties of String object and their description.

Sr.No. Property & Description

1 constructor

Returns a reference to the String function that created the object.

2 length

Returns the length of the string.

3 prototype

The prototype property allows you to add properties and methods to an object.

In the following sections, we will have a few examples to demonstrate the usage of
String properties.

https://www.tutorialspoint.com/javascript/javascript_boolean_object.htm
https://www.tutorialspoint.com/javascript/javascript_arrays_object.htm
https://www.tutorialspoint.com/javascript/string_constructor.htm
https://www.tutorialspoint.com/javascript/string_length.htm
https://www.tutorialspoint.com/javascript/object_prototype.htm

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

String Methods

Here is a list of the methods available in String object along with their description.

Sr.No. Method & Description

1 charAt()

Returns the character at the specified index.

2 charCodeAt()

Returns a number indicating the Unicode value of the character at the given
index.

3 concat()

Combines the text of two strings and returns a new string.

4 indexOf()

Returns the index within the calling String object of the first occurrence of the
specified value, or -1 if not found.

5 lastIndexOf()

Returns the index within the calling String object of the last occurrence of the
specified value, or -1 if not found.

6 localeCompare()

Returns a number indicating whether a reference string comes before or after or
is the same as the given string in sort order.

7 match()

Used to match a regular expression against a string.

8 replace()

https://www.tutorialspoint.com/javascript/string_charat.htm
https://www.tutorialspoint.com/javascript/string_charcodeat.htm
https://www.tutorialspoint.com/javascript/string_concat.htm
https://www.tutorialspoint.com/javascript/string_indexof.htm
https://www.tutorialspoint.com/javascript/string_lastindexof.htm
https://www.tutorialspoint.com/javascript/string_localecompare.htm
https://www.tutorialspoint.com/javascript/string_match.htm
https://www.tutorialspoint.com/javascript/string_replace.htm

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

Used to find a match between a regular expression and a string, and to replace
the matched substring with a new substring.

9 search()

Executes the search for a match between a regular expression and a specified
string.

10 slice()

Extracts a section of a string and returns a new string.

11 split()

Splits a String object into an array of strings by separating the string into
substrings.

12 substr()

Returns the characters in a string beginning at the specified location through the
specified number of characters.

13 substring()

Returns the characters in a string between two indexes into the string.

14 toLocaleLowerCase()

The characters within a string are converted to lower case while respecting the
current locale.

15 toLocaleUpperCase()

The characters within a string are converted to upper case while respecting the
current locale.

16 toLowerCase()

Returns the calling string value converted to lower case.

https://www.tutorialspoint.com/javascript/string_search.htm
https://www.tutorialspoint.com/javascript/string_slice.htm
https://www.tutorialspoint.com/javascript/string_split.htm
https://www.tutorialspoint.com/javascript/string_substr.htm
https://www.tutorialspoint.com/javascript/string_substring.htm
https://www.tutorialspoint.com/javascript/string_tolocalelowercase.htm
https://www.tutorialspoint.com/javascript/string_tolocaleuppercase.htm
https://www.tutorialspoint.com/javascript/string_tolowercase.htm

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

17 toString()

Returns a string representing the specified object.

18 toUpperCase()

Returns the calling string value converted to uppercase.

19 valueOf()

Returns the primitive value of the specified object.

String HTML Wrappers

Here is a list of the methods that return a copy of the string wrapped inside an
appropriate HTML tag.

Sr.No. Method & Description

1 anchor()

Creates an HTML anchor that is used as a hypertext target.

2 big()

Creates a string to be displayed in a big font as if it were in a <big> tag.

3 blink()

Creates a string to blink as if it were in a <blink> tag.

4 bold()

Creates a string to be displayed as bold as if it were in a tag.

5 fixed()

Causes a string to be displayed in fixed-pitch font as if it were in a <tt> tag

https://www.tutorialspoint.com/javascript/string_tostring.htm
https://www.tutorialspoint.com/javascript/string_touppercase.htm
https://www.tutorialspoint.com/javascript/string_valueof.htm
https://www.tutorialspoint.com/javascript/string_anchor.htm
https://www.tutorialspoint.com/javascript/string_big.htm
https://www.tutorialspoint.com/javascript/string_blink.htm
https://www.tutorialspoint.com/javascript/string_bold.htm
https://www.tutorialspoint.com/javascript/string_fixed.htm

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

6 fontcolor()

Causes a string to be displayed in the specified color as if it were in a <font
color="color"> tag.

7 fontsize()

Causes a string to be displayed in the specified font size as if it were in a <font
size="size"> tag.

8 italics()

Causes a string to be italic, as if it were in an <i> tag.

9 link()

Creates an HTML hypertext link that requests another URL.

10 small()

Causes a string to be displayed in a small font, as if it were in a <small> tag.

11 strike()

Causes a string to be displayed as struck-out text, as if it were in a <strike> tag.

12 sub()

Causes a string to be displayed as a subscript, as if it were in a <sub> tag

13 sup()

Causes a string to be displayed as a superscript, as if it were in a <sup> tag

In the following sections, we will have a few examples to demonstrate the usage of
String methods.

https://www.tutorialspoint.com/javascript/string_fontcolor.htm
https://www.tutorialspoint.com/javascript/string_fontsize.htm
https://www.tutorialspoint.com/javascript/string_italics.htm
https://www.tutorialspoint.com/javascript/string_link.htm
https://www.tutorialspoint.com/javascript/string_small.htm
https://www.tutorialspoint.com/javascript/string_strike.htm
https://www.tutorialspoint.com/javascript/string_sub.htm
https://www.tutorialspoint.com/javascript/string_sup.htm

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

JavaScript Conditions

Example

Execute a block of code based on user input:

var text;

var fruits = document.getElementById("myInput").value;

switch(fruits) {

 case "Banana":

 text = "Banana is good!";

 break;

 case "Orange":

 text = "I am not a fan of orange.";

 break;

 case "Apple":

 text = "How you like them apples?";

 break;

 default:

 text = "I have never heard of that fruit...";

}

More "Try it Yourself" examples below.

Definition

The switch statement executes a block of code depending on different cases.

The switch statement is a part of JavaScript's "Conditional" Statements, which
are used to perform different actions based on different conditions. Use switch

to select one of many blocks of code to be executed. This is the perfect solution
for long, nested if/else statements.

The switch statement evaluates an expression. The value of the expression is
then compared with the values of each case in the structure. If there is a

match, the associated block of code is executed.

The switch statement is often used together with a break or a default keyword

(or both). These are both optional:

https://www.w3schools.com/jsref/jsref_if.asp

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

The break keyword breaks out of the switch block. This will stop the execution
of more execution of code and/or case testing inside the block. If break is

omitted, the next code block in the switch statement is executed.

The default keyword specifies some code to run if there is no case match.

There can only be one default keyword in a switch. Although this is optional, it
is recommended that you use it, as it takes care of unexpected cases.

Syntax
switch(expression) {

 case n:

 code block

 break;

 case n:

 code block

 break;

 default:

 default code block

}

Parameter Values

Parameter Description

expression Required. Specifies an expression to be evaluated. The expression is evaluated

once. The value of the expression is compared with the values of each case

labels in the structure. If there is a match, the associated block of code is

executed

More Examples

Nagendran.R/ Full Stack Development for NG-IOT / 19SB602 / Introduction to Java Script

Example

Use today's weekday number to calculate the weekday name (Sunday=0,
Monday=1, Tuesday=2, ...):

var day;

switch (new Date().getDay()) {

 case 0:

 day = "Sunday";

 break;

 case 1:

 day = "Monday";

 break;

 case 2:

 day = "Tuesday";

 break;

 case 3:

 day = "Wednesday";

 break;

 case 4:

 day = "Thursday";

 break;

 case 5:

 day = "Friday";

 break;

 case 6:

 day = "Saturday";

 break;

 default:

 day = "Unknown Day";

}

