

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19IT401 COMPUTER NETWORKS II YEAR /IV SEMESTER

Unit 3-Network layer Topic 9 : Unicast routing protocols

UNICAST ROUTING PROTOCOLS

Three common protocols used in the Internet:

1. Routing Information Protocol (RIP), based on the distance-vector algorithm, 2.Open Shortest Path First (OSPF), based on the link-state algorithm, 3.Border Gateway Protocol (BGP), based on the path-vector algorithm.

Routing Information Protocol

The Routing Information Protocol (RIP) is one of the most widely used intradomain routing protocols based on the distance-vector routing algorithm we described earlier. RIP was started as part of the Xerox Network System (XNS), but it was the Berkeley Software Distribution (BSD) version of UNIX that helped make the use of RIP widespread.

Forwarding table for R2

4/19/2023

Forwarding table for R3

estination	Next	Cost in
network	router	hops
N1	R2	3
N2	R2	2
N3		1
N4		1

RIP message format

Unicast routing protocols/Computer Networks/Dr Previvataruppan/ SE/SNSCE of hops to the destination

Com: Command, request (1), response (2) **Ver:** Version, current version is 2 **Family:** Family of protocol, for TCP/IP value is 2 **Tag:** Information about autonomous system **Network address:** Destination address **Next-hop address:** Address length

Figure shows a more realistic example of the operation of RIP in an autonomous system. First, the figure shows all forwarding tables after all routers have been booted. Then we show changes in some tables when some update messages have been exchanged. Finally, we show the stabilized forwarding tables when there is no more change.

Example of an autonomous system using RIP (Part I)

R1 R2			R3				R4					
Des.	N. R.	Cost	Des.	N. R.	Cost	Des.	N. R.	Cost		Des.	N. R.	Cost
N1		1	N3		1	N4		1		N5		1
N2		1	N4		1	N6		1		N6		1
N3		1	N5		1							

Forwarding tables after all routers booted

Unicast routing protocols/Computer Networks/Dr.K.Periyakaruppan/CSE/SNSCE

Legend

Des.: Destination network N. R.: Next router Cost: Cost in hops

Example of an autonomous system using RIP (Part II)

Unicast routing protocols/Computer Networks/Dr.K.Periyakaruppan/CSE/SNSCE

Legend

- Des.: Destination network
- N. R.: Next router
- Cost: Cost in hops
- : New route
- ← : Old route

Changes in the forwarding tables of R1, R3, and R4 after they receive a copy of R2's table Example of an autonomous system using RIP (Part III)

Forwarding tables for all routers after they have been stablized

	Final R1 Final R2		Final R3			Final R4					
Des.	N. R.	Cost	Des.	N. R.	Cost	Des.	N. R.	Cost	Des.	N. R.	Cost
N1		1	N1	R1	2	N1	R2	3	N1	R2	3
N2		1	N2	R1	2	N2	R2	3	N2	R2	3
N3		1	N3		1	N3	R2	2	N3	R2	2
N4	R2	2	N4		1	N4		1	N4	R2	2
N5	R2	2	N5		1	N5	R2	2	N5		1
N6	R2	3	N6	R3	2	N6		1	N6		1

4/19/2023

Unicast routing protocols/Computer Networks/Dr.K.Periyakaruppan/CSE/SNSCE

Des.: Destination network N. R.: Next router Cost: Cost in hops

Open Shortest Path First

Shortest Path First (OSPF) is also Open intradomain routing protocol like RIP, but it is based on the link-state routing protocol. OSPF is an open protocol, which means that the specification is a public document.

an

Metric in OSPF

Forwarding tables in OSPF

Forwarding table for R1									
Destination	Next	Cost							
network	router								
N1									
N2									
N3	R2								
N4	R2	12							

Forwarding table for R3

Destination	Next	Cost	
network	router		
N1	R2	12	
N2	R2	8	
N3		3	
N4		4	

Forwardi	na
rorwaru	пg

Destination	Next	Cost
network	router	
N1	R1	9
N2		5
N3		3
N4	R3	7

Areas in an autonomous system

Autonomous System (AS)

Figure 20.22: Five different LSPs (Part I)

b. Network link

Figure 20.22: Five different LSPs (Part II)

c. Summary link to network

d. Summary link to AS

Figure 20.23: OSPF message formats (Part I)

Database description

E, T, B, I, M, MS: flags used by OSPF Priority: used to define the designated router Rep.: Repeated as required

non header (Type: 1)								
etwork mask								
E T Priori	ty							
ead interval								
ed router IP address								
nated router IP address								
nbor IP address								

Figure 20.23: OSPF message formats (Part II)

Unicast routing protocols/Computer Networks/Dr.K.Periyakaruppan/CSE/SNSCE

E, T, B, I, M, MS: flags used by OSPF Priority: used to define the designated router Rep.: Repeated as required

OSPF common header (Type: 4)

Number of link-state advertisements

Link-state general header

Link-state advertisement (Any combination of five different kinds)

Link-state update

Border Gateway Protocol

- The Border Gateway Protocol version 4 (BGP4) is the only interdomain routing protocol used in the Internet today.
- \triangleright BGP4 is based on the path-vector algorithm we described before, but it is tailored to provide information about the reachability of networks in the Internet.

- BGP, and in particular BGP4, is a complex protocol. In this section, we introduce the basics of BGP and its relationship with intradomain routing protocols (RIP or OSPF).
- Figure shows an example of an internet with four autonomous systems. AS2, AS3, and AS4 are stub autonomous systems; AS1 is a transient one. > In our example, data exchange between AS2, AS3, and
 - AS4 should pass through AS1.

- To enable each router to route a packet to any network in the internet, we first install a variation of BGP4, called *external BGP (eBGP), on each border router (the* one at the edge of each AS which is connected to a router at another AS).
 We then install the second variation of BGP, called *internal*
- We then install the second variation of BGP (iBGP), on all routers.
- This means that the border routers will be running three routing protocols (intradomain, eBGP, and iBGP), but other routers are running two protocols (intradomain and iBGP).

A sample internet with four ASs

eBGP operation

	ЪТ			INELWOIKS
Networks	Next	t AS	6	N1. N2. N3. N4
I, N2, N3, N4	R1	AS1	6	N13 N14 N15
8, N9	R5	AS2		IN13, IN1 4 , IN13
	Networks I, N2, N3, N4 8, N9	Networks Next I, N2, N3, N4 R1 3, N9 R5	NetworksNext ASI, N2, N3, N4R1AS13, N9R5AS2	Networks Next AS 5 I, N2, N3, N4 R1 AS1 6 3, N9 R5 AS2

Legend

- eBGP session
- Point-to-point WAN
 - 🗎 LAN
- s Router

Combination of eBGP and iBGP sessions in our internet

Networks	Next	AS
3, N14, N15	R4	AS1, AS4

Finalized BGP path tables (Part I)

Networks	Next	Path								
N8, N9	R5	AS1, AS2								
N10, N11, N12	2 R2	AS1, AS3								
N13, N14, N15	5 R4	AS1, AS4								
Path	table fo	or R1								
			AS1		N13					
N8 R5 N9	N8 R1 N5 N5 N5 N5 N5 N5 N5 N5 N5 N5									
AS2	AS3	R6 N10	R7		Networks	Nex	t Path			
		N11 R8	N12		N8, N9	R2	AS1, AS2			
Notwork	Nevt	Dath			N10, N11, N12	R2	AS1, AS3			
INCLWOIKS	R1 AS				N13, N14, N15	R4	AS1, AS4			
N10 N11 N12	R6 AS	1, AS2			Path ta	able f	or R3			
N13 N14 N15	$\mathbf{R1}$ \mathbf{AS}	1, ASS 1 AS4								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,110+								

Finalized BGP path tables (Part II)

Networks	Nex	t Path		Networks	Next	Path
N1, N2, N3, N4	R1	AS2, AS1		N8, N9	R1	AS1, AS2
N10, N11, N12	R1	AS2, AS1, AS3		N10, N11, N12	R1	AS1, AS3
N13, N14, N15	R1	AS2, AS1, AS4		N13, N14, N15	R9	AS1, AS4
Doth t	abla f	or D5	•	Path ta	able f	or R4

Path table for R5

r alli laule iui N4

Next	Path
R2	AS3, AS1
R2	AS3, AS1, AS2
R2	AS3, AS1, AS4

Finalized BGP path tables (Part III)

Networks	Next	Path				
N1, N2, N3, N4	R4	AS4, AS1				
N8, N9	R4	AS4, AS1, AS2				
N10, N11, N12	R4	AS4, AS1, AS3				
D.1.11 C DO						

Path table for R9

Path table for R7 Unicast routing protocols/Computer Networks/Dr.K.Periyakaruppan/CSE/SNSCE

vorks	Next	Path
N3, N4	R6	AS3, AS1
	R 6	AS3, AS1, AS2
4, N15	R6	AS3, AS1, AS4

Path table for R8

Des.	Next	Cost	Des.	Next	Cost	Des.	Next	Cost
N1	—	1	N1		1	N1	R2	2
N4	R4	2	N4	R3	2	N4		1
N8	R5	1	N8	R1	2	N8	R2	3
N9	R5	1	N9	R1	2	N9	R2	3
N10	R2	2	N10	R6	1	N10	R2	2
N11	R2	2	N11	R6	1	N11	R2	2
N12	R2	2	N12	R6	1	N12	R2	2
N13	R4	2	N13	R3	3	N13	R4	2
N14	R4	2	N14	R3	3	N14	R4	2
N15	R4	2	N15	R3	3	N15	R4	2
Tab	e for	R1	Tabl	e for 2	R2	Tabl	e for l	R3

Des.	Next	Cost
N1	R1	2
N4	_	1
N8	R1	2
N9	R1	2
N10	R3	3
N11	R3	3
N12	R3	3
N13	R9	1
N14	R9	1
N15	R9	1

Table for R4

Forwarding tables after injection from BGP (Part II)

Table for R8 Unicast routing protocols/Computer Networks/Dr.K.Periyakaruppan/CSE/SNSCE

Table for R9

Format of path attribute

O: Optional bit (set if attribute is optional) **P:** Partial bit (set if an optional attribute in lost in transit) **T:** Transitive bit (set if attribute is transitive) **E:** Extended bit (set if attribute length is two bytes)

0					8	16
0	Т	Р	E	All 0s	Attribute type	Attribute value ler
					Attribute value (v	ariable length)

Flow diagram for route selection

BGP messages

8

0

Abbreviations

O len: Option length EC: Error code ES: Error subcode UR len: Unfeasible route length PA len: Path attribute length

4/19/2023

Unicast routing protocols/Computer Networks/Dr.K.Periyakaruppan/CSE/SNSCE

	16	24	31
Maı	ker		
(16 b	ytes)		
	Туре	EC	
Erroi Variable	data e length)		

Notification message (type 3)

	16	24	31
Ma	rker		
(16 b	ytes)		
	Туре		

Keepalive message (type 4)

Length: Length of total message in bytes Type: Type of message (1 to 4)

Assessment

- a) List Unicast routing protocols.
- b) What is RIP?
- c) What is Intra and inter domain routing protocols?
- d) What is BGP?.

Reference

TEXT BOOKS

Behrouz A. Forouzan, Data Communications and Networking, Fifth Edition TMH, 2013.

REFERENCES

- William Stallings, Data and Computer Communications, Tenth Edition, Pearson 1. Education, 2013.
- 2. Andrew Tanenbaum, Computer Networks, Fifth Edition, Pearson (5th Edition) Education, 2013.
- James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach 3. Featuring the Internet, Sixth Edition, Pearson Education, 2013.
- Larry L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, Fifth 4. Edition, Morgan Kaufmann Publishers Inc., 2012.

