
UNIT III

SYNCHRONIZATION
&

DEADLOCK

III

SYNCHRONIZATION

DEADLOCK

Synchronization &
Deadlock

Synchronization
• Background

• The Critical-Section Problem

• Peterson’s Solution

• Synchronization Hardware

• Semaphores

• Classic Problems of Synchronization

Deadlock
•

•

•

•

•

•

•

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Synchronization &
Deadlock

Deadlock
System Model

Deadlock characterization

Methods for handling deadlocks

Deadlock prevention

Deadlock avoidance

Deadlock Detection

Recovery from deadlock.

Background

• Concurrent access to shared data may result in data inconsistency

• Maintaining data consistency requires mechanisms to ensure the orderly

execution of cooperating processes

• Suppose that we wanted to provide a solution to the consumer

problem that fills all the buffers. We can do so by having an integer

keeps track of the number of full buffers. Initially, count is set to 0. It is

incremented by the producer after it produces a new buffer and is

decremented by the consumer after it consumes a buffer.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Background

Concurrent access to shared data may result in data inconsistency

Maintaining data consistency requires mechanisms to ensure the orderly

Suppose that we wanted to provide a solution to the consumer-producer

the buffers. We can do so by having an integer count that

keeps track of the number of full buffers. Initially, count is set to 0. It is

incremented by the producer after it produces a new buffer and is

decremented by the consumer after it consumes a buffer.

while (true) {

/* produce an item and put in nextProduced */
while (count == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Producer

/* produce an item and put in nextProduced */
while (count == BUFFER_SIZE)

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

while (true) {
while (count == 0)

; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

/* consume the item in nextConsumed
}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Consumer

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

/* consume the item in nextConsumed

Race Condition
• count++ could be implemented as

register1 = count

register1 = register1 + 1

count = register1

• count-- could be implemented as

register2 = count

register2 = register2 - 1

count = register2

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Race Condition

Race Condition
• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count

S1: producer execute register1 = register1 + 1

S2: consumer execute register2 = count

S3: consumer execute register2 = register2

S4: producer execute count = register1

S5: consumer execute count = register2

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Race Condition
Consider this execution interleaving with “count = 5” initially:

register1 = count {register1 = 5}

register1 = register1 + 1 {register1 = 6}

register2 = count {register2 = 5}

register2 = register2 - 1 {register2 = 4}

count = register1 {count = 6 }

count = register2 {count = 4}

Solution to Critical

1.Mutual Exclusion - If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections

2.Progress - If no process is executing in its critical section and there exist some

processes that wish to enter their critical section, then the selection of the processes

that will enter the critical section next cannot be postponed indefinitely

3.Bounded Waiting - A bound must exist on the number of times that other processes

are allowed to enter their critical sections after a process has made a request to enter its

critical section and before that request is granted

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Solution to Critical-Section Problem

is executing in its critical section, then no other

processes can be executing in their critical sections

If no process is executing in its critical section and there exist some

processes that wish to enter their critical section, then the selection of the processes

that will enter the critical section next cannot be postponed indefinitely

A bound must exist on the number of times that other processes

are allowed to enter their critical sections after a process has made a request to enter its

critical section and before that request is granted

Peterson’s Solution

• Two process solution

• Assume that the LOAD and STORE instructions are atomic; that is, cannot be
interrupted.

• The two processes share two variables:

• int turn;

• Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical section.

• The flag array is used to indicate if a process is ready to enter the critical section.

flag[i] = true implies that process Pi is ready!

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Peterson’s Solution

Assume that the LOAD and STORE instructions are atomic; that is, cannot be

indicates whose turn it is to enter the critical section.

array is used to indicate if a process is ready to enter the critical section.

is ready!

do {
flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);

critical section
flag[i] = FALSE;

remainder section
} while (TRUE);

Algorithm for Process

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

while (flag[j] && turn == j);

remainder section

Algorithm for Process Pi

Synchronization Hardware

• Many systems provide hardware support for critical section code

• Uniprocessors – could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions

• Atomic = non-interruptable

• Either test memory word and set value or swap contents of two memory

words
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Synchronization Hardware

Many systems provide hardware support for critical section code

could disable interrupts

Currently running code would execute without preemption

Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

Modern machines provide special atomic hardware instructions

Either test memory word and set value or swap contents of two memory

Solution to Critical

do {
acquire lock

critical section
release lock

remainder section
} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Solution to Critical-section Problem
Using Locks

TestAndndSet Instruction

• Definition:

boolean TestAndSet (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv:

}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

TestAndndSet Instruction

boolean TestAndSet (boolean *target)

Solution using TestAndSet
• Shared boolean variable lock., initialized to false.
• Solution:

do {
while (TestAndSet (&lock))

; // do nothing
// critical section

lock = FALSE;
// remainder section

} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Solution using TestAndSet
Shared boolean variable lock., initialized to false.

Swap Instruction

• Definition:

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
*a = *b;
*b = temp:

}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Swap Instruction

void Swap (boolean *a, boolean *b)

Solution using Swap
• Shared Boolean variable lock initialized to FALSE; Each process has a local

Boolean variable key
• Solution:

do {
key = TRUE;
while (key == TRUE)

Swap (&lock, &key);
// critical section

lock = FALSE;

// remainder section

} while (TRUE);
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Solution using Swap
Shared Boolean variable lock initialized to FALSE; Each process has a local

Bounded

do {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key)

key = TestAndSet(&lock);

waiting[i] = FALSE;

// critical section

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = FALSE;

else

waiting[j] = FALSE;

// remainder section

} while (TRUE);
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded-waiting Mutual Exclusion
with TestandSet()

Semaphore

• Synchronization tool that does not require busy waiting

• Semaphore S – integer variable

• Two standard operations modify S: wait() and signal() ,

• Less complicated

• Can only be accessed via two indivisible (atomic) operations

• wait (S) {
while S <= 0

; // no-op
S--;

}
• signal (S) {

S++;
}

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore

Synchronization tool that does not require busy waiting

() , Originally called P() and V()

Can only be accessed via two indivisible (atomic) operations

Semaphore as
Synchronization Tool

• Counting semaphore – integer value can range over an unrestricted domain
• Binary semaphore – integer value can range only between 0

and 1; can be simpler to implement
• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore
• Provides mutual exclusion

Semaphore mutex; // initialized to 1
do {

wait (mutex);
// Critical Section

signal (mutex);
// remainder section

} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore as General
Synchronization Tool

integer value can range over an unrestricted domain
integer value can range only between 0

as a binary semaphore

Semaphore Implementation

• Must guarantee that no two processes can execute

semaphore at the same time

• Thus, implementation becomes the critical section problem where the wait and

signal code are placed in the crtical section.

• Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections and therefore this is

not a good solution.
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore Implementation

Must guarantee that no two processes can execute wait() and signal() on the same

Thus, implementation becomes the critical section problem where the wait and

signal code are placed in the crtical section.

in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections and therefore this is

Semaphore Implementation
with no Busy waiting

• With each semaphore there is an associated waiting queue. Each entry in a

waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the appropriate

waiting queue.

• wakeup – remove one of processes in the waiting queue and place it in the

ready queue.
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore Implementation
with no Busy waiting

With each semaphore there is an associated waiting queue. Each entry in a

place the process invoking the operation on the appropriate

remove one of processes in the waiting queue and place it in the

Semaphore Implementation
with no Busy waiting

• Implementation of wait:
wait(semaphore *S) {

S->value--;
if (S->value < 0) {

add this process to S->list;
block();

}
}

• Implementation of signal:

signal(semaphore *S) {
S->value++;
if (S->value <= 0) {

remove a process P from S
wakeup(P);

}
} Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Semaphore Implementation
with no Busy waiting (Cont.)

>list;

remove a process P from S->list;

Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an event that can be

caused by only one of the waiting processes
• Let S and Q be two semaphores initialized to 1

P0

wait (S);
wait (Q);

.

.

.
signal (S);
signal (Q);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Deadlock and Starvation
two or more processes are waiting indefinitely for an event that can be

caused by only one of the waiting processes
be two semaphores initialized to 1

P1

wait (Q);
wait (S);

.

.

.
signal (Q);
signal (S);

Deadlock and Starvation

• Starvation – indefinite blocking. A process may never be removed from the semaphore

queue in which it is suspended

• Priority Inversion - Scheduling problem when lower

needed by higher-priority process

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Deadlock and Starvation

indefinite blocking. A process may never be removed from the semaphore

Scheduling problem when lower-priority process holds a lock

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Classical Problems of Synchronization

Bounded

• N buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value N.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded-Buffer Problem

buffers, each can hold one item

initialized to the value 1

initialized to the value 0

initialized to the value N.

Bounded Buffer Problem (Cont.)
• The structure of the producer process

do {

// produce an item in nextp

wait (empty);
wait (mutex);

// add the item to the buffer

signal (mutex);
signal (full);

} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded Buffer Problem (Cont.)

Bounded Buffer Problem (Cont.)
• The structure of the consumer process

do {
wait (full);
wait (mutex);

// remove an item from buffer to nextc

signal (mutex);
signal (empty);

// consume the item in nextc

} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Bounded Buffer Problem (Cont.)

// remove an item from buffer to nextc

Readers

• A data set is shared among a number of concurrent processes

• Readers – only read the data set; they do

• Writers – can both read and write

• Problem – allow multiple readers to read at the same time. Only one single

writer can access the shared data at the same time

• Shared Data
• Data set
• Semaphore mutex initialized to 1
• Semaphore wrt initialized to 1
• Integer readcount initialized to 0

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Readers-Writers Problem

A data set is shared among a number of concurrent processes

only read the data set; they do not perform any updates

allow multiple readers to read at the same time. Only one single

writer can access the shared data at the same time

Readers-Writers Problem (Cont.)
• The structure of a writer process

do {
wait (wrt) ;

// writing is performed

signal (wrt) ;
} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Writers Problem (Cont.)
The structure of a writer process

// writing is performed

Readers-Writers Problem (Cont.)
• The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)

wait (wrt) ;
signal (mutex)

// reading is performed
wait (mutex) ;
readcount - - ;
if (readcount == 0)

signal (wrt) ;
signal (mutex) ;

} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Writers Problem (Cont.)

Dining-Philosophers Problem

• Shared data
• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Philosophers Problem

initialized to 1

Dining-Philosophers Problem
• The structure of Philosopher i:

do {
wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Philosophers Problem
(Cont.)

wait (chopStick[(i + 1) % 5]);

signal (chopstick[(i + 1) % 5]);

Problems with Semaphores
• Incorrect use of semaphore operations:

• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting of wait (mutex) or signal (mutex) (or both)

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Problems with Semaphores
Incorrect use of semaphore operations:

signal (mutex) …. wait (mutex)

wait (mutex) … wait (mutex)

Omitting of wait (mutex) or signal (mutex) (or both)

TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley &

Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018.

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU

