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Background

• Concurrent access to shared data may result in data inconsistency

• Maintaining data consistency requires mechanisms to ensure the orderly 

execution of cooperating processes

• Suppose that we wanted to provide a solution to the consumer

problem that fills all the buffers. We can do so by having an integer 

keeps track of the number of full buffers.  Initially, count is set to 0. It is 

incremented by the producer after it produces a new buffer and is 

decremented by the consumer after it consumes a buffer.
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Background

Concurrent access to shared data may result in data inconsistency

Maintaining data consistency requires mechanisms to ensure the orderly 

Suppose that we wanted to provide a solution to the consumer-producer 

the buffers. We can do so by having an integer count that 

keeps track of the number of full buffers.  Initially, count is set to 0. It is 

incremented by the producer after it produces a new buffer and is 

decremented by the consumer after it consumes a buffer.



while (true) {

/*  produce an item and put in nextProduced  */
while (count == BUFFER_SIZE)

; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

}   
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Producer 

/*  produce an item and put in nextProduced  */
while (count == BUFFER_SIZE)

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;



while (true)  {
while (count == 0)

; // do nothing
nextConsumed =  buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

/*  consume the item in nextConsumed
}
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Consumer

nextConsumed =  buffer[out];
out = (out + 1) % BUFFER_SIZE;

/*  consume the item in nextConsumed



Race Condition
• count++ could be implemented as

register1 = count

register1 = register1 + 1

count = register1

• count-- could be implemented as

register2 = count

register2 = register2 - 1

count = register2
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Race Condition



Race Condition
• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count

S1: producer execute register1 = register1 + 1  

S2: consumer execute register2 = count   

S3: consumer execute register2 = register2 

S4: producer execute count = register1

S5: consumer execute count = register2   
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Race Condition
Consider this execution interleaving with “count = 5” initially:

register1 = count {register1 = 5}

register1 = register1 + 1  {register1 = 6} 

register2 = count   {register2 = 5} 

register2 = register2 - 1   {register2 = 4} 

count = register1 {count = 6 } 

count = register2   {count = 4}



Solution to Critical

1.Mutual Exclusion - If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections

2.Progress - If no process is executing in its critical section and there exist some 

processes that wish to enter their critical section, then the selection of the processes 

that will enter the critical section next cannot be postponed indefinitely

3.Bounded Waiting - A bound must exist on the number of times that other processes 

are allowed to enter their critical sections after a process has made a request to enter its 

critical section and before that request is granted
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Solution to Critical-Section Problem

is executing in its critical section, then no other 

processes can be executing in their critical sections

If no process is executing in its critical section and there exist some 

processes that wish to enter their critical section, then the selection of the processes 

that will enter the critical section next cannot be postponed indefinitely

A bound must exist on the number of times that other processes 

are allowed to enter their critical sections after a process has made a request to enter its 

critical section and before that request is granted



Peterson’s Solution

• Two process solution

• Assume that the LOAD and STORE instructions are atomic; that is, cannot be 
interrupted.

• The two processes share two variables:

• int turn; 

• Boolean flag[2]

• The variable turn indicates whose turn it is to enter the critical section.  

• The flag array is used to indicate if a process is ready to enter the critical section. 

flag[i] = true implies that process Pi is ready!
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Peterson’s Solution

Assume that the LOAD and STORE instructions are atomic; that is, cannot be 

indicates whose turn it is to enter the critical section.  

array is used to indicate if a process is ready to enter the critical section. 

is ready!



do { 
flag[i] = TRUE; 
turn = j; 
while (flag[j] && turn == j); 

critical section 
flag[i] = FALSE; 

remainder section 
} while (TRUE); 

Algorithm for Process 

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

while (flag[j] && turn == j); 

remainder section 

Algorithm for Process Pi



Synchronization Hardware

• Many systems provide hardware support for critical section code

• Uniprocessors – could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware instructions

• Atomic = non-interruptable

• Either test memory word and set value or swap contents of two memory 

words
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Synchronization Hardware

Many systems provide hardware support for critical section code

could disable interrupts

Currently running code would execute without preemption

Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

Modern machines provide special atomic hardware instructions

Either test memory word and set value or swap contents of two memory 



Solution to Critical

do { 
acquire lock 

critical section 
release lock 

remainder section 
} while (TRUE); 
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Solution to Critical-section Problem
Using Locks



TestAndndSet Instruction 

• Definition:

boolean TestAndSet (boolean *target)
{

boolean rv = *target;
*target = TRUE;
return rv:

}
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TestAndndSet Instruction 

boolean TestAndSet (boolean *target)



Solution using TestAndSet
• Shared boolean variable lock., initialized to false.
• Solution:

do {
while ( TestAndSet (&lock ))

;   // do nothing
//    critical section

lock = FALSE;
//      remainder section 

} while (TRUE);
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Solution using TestAndSet
Shared boolean variable lock., initialized to false.



Swap  Instruction

• Definition:

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
*a = *b;
*b = temp:

}
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Swap  Instruction

void Swap (boolean *a, boolean *b)



Solution using Swap
• Shared Boolean variable lock initialized to FALSE; Each process has a local 

Boolean variable key
• Solution:

do {
key = TRUE;
while ( key == TRUE)

Swap (&lock, &key );
//    critical section

lock = FALSE;

//      remainder section 

} while (TRUE);
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Solution using Swap
Shared Boolean variable lock initialized to FALSE; Each process has a local 



Bounded

do { 

waiting[i] = TRUE; 

key = TRUE; 

while (waiting[i] && key) 

key = TestAndSet(&lock); 

waiting[i] = FALSE; 

// critical section 

j = (i + 1) % n; 

while ((j != i) && !waiting[j]) 

j = (j + 1) % n; 

if (j == i) 

lock = FALSE; 

else 

waiting[j] = FALSE; 

// remainder section 

} while (TRUE);
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Bounded-waiting Mutual Exclusion 
with TestandSet( )



Semaphore

• Synchronization tool that does not require busy waiting 

• Semaphore S – integer variable

• Two standard operations modify S: wait( ) and signal( )  , 

• Less complicated

• Can only be accessed via two indivisible (atomic) operations

• wait (S) { 
while S <= 0

; // no-op
S--;

}
• signal (S) { 

S++;
}
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Semaphore

Synchronization tool that does not require busy waiting 

( )  , Originally called P() and V()

Can only be accessed via two indivisible (atomic) operations



Semaphore as 
Synchronization Tool

• Counting semaphore – integer value can range over an unrestricted domain
• Binary semaphore – integer value can range only between 0 

and 1; can be simpler to implement
• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore
• Provides mutual exclusion

Semaphore mutex;    //  initialized to 1
do {

wait (mutex);
// Critical Section

signal (mutex);
// remainder section

} while (TRUE);
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Semaphore as General
Synchronization Tool

integer value can range over an unrestricted domain
integer value can range only between 0 

as a binary semaphore



Semaphore Implementation

• Must guarantee that no two processes can execute 

semaphore at the same time

• Thus, implementation becomes the critical section problem where the wait and 

signal code are placed in the crtical section.

• Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical sections and therefore this is 

not a good solution.
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Semaphore Implementation

Must guarantee that no two processes can execute wait( ) and signal( ) on the same 

Thus, implementation becomes the critical section problem where the wait and 

signal code are placed in the crtical section.

in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

Note that applications may spend lots of time in critical sections and therefore this is 



Semaphore Implementation
with no Busy waiting

• With each semaphore there is an associated waiting queue. Each entry in a 

waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the      appropriate 

waiting queue.

• wakeup – remove one of processes in the waiting queue and place it in the 

ready queue.
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Semaphore Implementation
with no Busy waiting

With each semaphore there is an associated waiting queue. Each entry in a 

place the process invoking the operation on the      appropriate 

remove one of processes in the waiting queue and place it in the 



Semaphore Implementation 
with no Busy waiting

• Implementation of wait:
wait(semaphore *S) { 

S->value--; 
if (S->value < 0) { 

add this process to S->list; 
block(); 

} 
}

• Implementation of signal:

signal(semaphore *S) { 
S->value++; 
if (S->value <= 0) { 

remove a process P from S
wakeup(P); 

}
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Semaphore Implementation 
with no Busy waiting (Cont.)

>list; 

remove a process P from S->list; 



Deadlock and Starvation
• Deadlock – two or more processes are waiting indefinitely for an event that can be 

caused by only one of the waiting processes
• Let S and Q be two semaphores initialized to 1

P0

wait (S); 
wait (Q); 

. 

. 

. 
signal  (S); 
signal (Q); 
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Deadlock and Starvation
two or more processes are waiting indefinitely for an event that can be 

caused by only one of the waiting processes
be two semaphores initialized to 1

P1

wait (Q);
wait (S);

.

.

.
signal (Q);
signal (S);



Deadlock and Starvation

• Starvation – indefinite blocking.  A process may never be removed from the semaphore 

queue in which it is suspended

• Priority Inversion  - Scheduling problem when lower

needed by higher-priority process
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Deadlock and Starvation

indefinite blocking.  A process may never be removed from the semaphore 

Scheduling problem when lower-priority process holds a lock 



Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem
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Classical Problems of Synchronization



Bounded

• N buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value N.
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Bounded-Buffer Problem

buffers, each can hold one item

initialized to the value 1

initialized to the value 0

initialized to the value N.



Bounded Buffer Problem (Cont.)
• The structure of the producer process

do  {

//   produce an item in nextp

wait (empty);
wait (mutex);

//  add the item to the  buffer

signal (mutex);
signal (full);

} while (TRUE);
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Bounded Buffer Problem (Cont.)



Bounded Buffer Problem (Cont.)
• The structure of the consumer process

do {
wait (full);
wait (mutex);

//  remove an item from  buffer to nextc

signal (mutex);
signal (empty);

//  consume the item in nextc

} while (TRUE);
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Bounded Buffer Problem (Cont.)

//  remove an item from  buffer to nextc



Readers

• A data set is shared among a number of concurrent processes

• Readers – only read the data set; they do 

• Writers – can both read and write

• Problem – allow multiple readers to read at the same time.  Only one single 

writer can access the shared data at the same time

• Shared Data
• Data set
• Semaphore mutex initialized to 1
• Semaphore wrt initialized to 1
• Integer readcount initialized to 0

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Readers-Writers Problem

A data set is shared among a number of concurrent processes

only read the data set; they do not perform any updates

allow multiple readers to read at the same time.  Only one single 

writer can access the shared data at the same time



Readers-Writers Problem (Cont.)
• The structure of a writer process

do {
wait (wrt) ;

//    writing is performed

signal (wrt) ;
} while (TRUE);
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Writers Problem (Cont.)
The structure of a writer process

//    writing is performed



Readers-Writers Problem (Cont.)
• The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)  

wait (wrt) ;
signal (mutex)

// reading is performed
wait (mutex) ;
readcount  - - ;
if (readcount  == 0)  

signal (wrt) ;
signal (mutex) ;

} while (TRUE);
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Writers Problem (Cont.)



Dining-Philosophers Problem

• Shared data 
• Bowl of rice (data set)
• Semaphore chopstick [5] initialized to 1
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Philosophers Problem

initialized to 1



Dining-Philosophers Problem 
• The structure of Philosopher i:

do  { 
wait ( chopstick[i] );
wait ( chopStick[ (i + 1) % 5] );

//  eat

signal ( chopstick[i] );
signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);
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Philosophers Problem 
(Cont.)

wait ( chopStick[ (i + 1) % 5] );

signal (chopstick[ (i + 1) % 5] );



Problems with Semaphores
• Incorrect use of semaphore operations:

• signal (mutex)  ….  wait (mutex)

• wait (mutex)  …  wait (mutex)

• Omitting  of wait (mutex) or signal (mutex) (or both)
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Problems with Semaphores
Incorrect use of semaphore operations:

signal (mutex)  ….  wait (mutex)

wait (mutex)  …  wait (mutex)

Omitting  of wait (mutex) or signal (mutex) (or both)
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