Bipartite Matcfing

Bipartite Matcfing

\mathcal{A} graph is bipartite if its vertex setcan be partitioned into two subsets \mathcal{A} and \mathcal{B} so that each edge fas one endpoint in \mathcal{A} and the other endpoint in \mathcal{B}.

\mathcal{A}

\mathcal{A} matching \mathcal{M} is a subset of edges so that
every vertex has degree at most one in \mathcal{M}.

Maximum Matcfing

The Gipartite matching problem:
Find a matching with the maximum number of edges.

\mathcal{A} perfect matching is a matching in whichevery vertex is matched.

The perfect matching problem: Is there a perfect matching?

First $\mathcal{T r}$ y

- Greedy method?
(add an edge with both endpoints unmatched)

Key Questions

- How to tell if a grapf does not have a (perfect) matcfing?
- How to determine the size of a maximum matching?
- How to find a maximum matching efficiently?

Existence of Perfect Matcfing

```
Hall's Theorem [1935]:
A 6ipartite graph G=(\mathcal{A},\mathcal{B};\mathcal{E}) fas a matching that "saturates" A
if and only if |\mathcal{N(S)|}>=|\mathcal{S}|\mathrm{ for every subset S of }\mathcal{A}\mathrm{ .}
```


Bound for Maximum Matcfing

What is a good upper bound on the size of a maximum matching?

König [1931]:
In a bipartite graph, the size of a maximum matc fing is equal to the size of a minimum vertex cover.

$$
\mathcal{N} P \text { and co- } \mathcal{N} P
$$

Implies \mathcal{H} all's the orem.

Algoritfmic Idea?

Any ide a to find a larger matching?

Augmenting Patf

Given a matching \mathcal{M}, an \mathcal{M} - alternating path is a path that alternates betweenedges in \mathfrak{M} and edges not in \mathcal{M}. An \mathcal{M}-alternating pat反 whose endpoints are unmatched $6 y \mathcal{M}$ is an \mathcal{M}-augmenting path.

$$
M^{*}=M \oplus P
$$

Optimality Condition

What if there is no more \mathcal{M}-augmenting path?

If there is no \mathcal{M}-augmenting path, then \mathcal{M} is maximum!

Prove the contrapositive:
\mathcal{A} bigger matching \Rightarrow an \mathcal{M}-augmenting path

1. Consider $H:=M \cup M^{*}$
2. Every vertex in H has degree at most 2
3. A component in H is an evencycle or a path
4. \quad Since $\left|M^{*}\right|>|M|, \exists$ an \mathcal{M}-augmenting path!

Algorithm

Key: M is maximum \Leftrightarrow no M-augmenting path

$$
M:=\emptyset .
$$

while there is an M-augmenting path P set $M:=M \oplus P$ return M.

How to find efficiently?

Finding M-augmenting paths

- Orient the edges (edges in M go up, others go down)
- An M-augmenting path \Leftrightarrow
a directed path between two unmatched vertices

Complexity

- At most n iterations
- An augmenting path in $O(m)$ time by a DFS or a BFS
- Total running time $O(m n)$

Minimum Vertex Cover

```
Hall's Theorem [1935]:
A Gipartite grapf G=(\mathcal{A,B;E) fas a matcfing that "saturates" A}
if and only if }|\mathcal{N}(\mathcal{S})|>=|\mathcal{S}|\mathrm{ for every subset S of }\mathcal{A}\mathrm{ .
```

```
König [1931]:
In a bipartite graph, the size of a maximum matching
is equal to the size of a minimum vertex cover.
```

Idea: consider why the algorithm got stuck...

> Faster Algoritfims

$O(n m)$	Konig [1931], Kuhn [1955b]
$O(\sqrt{n} m)$	Hoperoft and Karp [1971,1973], Karzanov [1973a]
${\hline \multirow{6}{})}{O\left(n^{3 / 2} \sqrt{\operatorname{mog}^{n}}\right)} }$	Ibarra and Moran [1981]
$O\left(\sqrt{n} m \log _{\mathrm{n}}\left(n^{2} / m\right)\right)$	Feder and Motwani [1991,1995]

Observation: Many short and disjoint augmenting paths.
Idea: Find augmenting paths simultaneously in one search.

Randomized $\operatorname{Algorithm}$

- Matcfing
- Determinants
- Randomized algoritfms

```
Bonus problem 1 (50%):
Given a bipartite graph with red and blue edges,
find a deterministic polynomial time algoritfm to determine
if there is a perfect matching with exactly Kred edges.
```


Application of Bipartite Matc fing

Iob Assignment Problem:
Each person is willing to do a subset of jobs.
Can you find an assignment so that all jobs are takencare of?

Application of Bipartite Matçing

> With Hall's theorem, now you can determine exactly when a partialchessboard can be filled with dominos.

Application of Bipartite Matcfing

Latin Square: a nxn square, the goal is to fill the square with numbers from 1 to n so that:

- Each row contains every number from 1 to n.
- Each column contains every number from 1 to n.

1	2	3	4
3	4	2	1
2	1	4	3
4	3	1	2

Application of Bipartite Matcfing

$\mathcal{N o w}$ suppose you are given a partial Latin Square.

2	4	5	3	1
4	1	3	2	5
3	2	1	5	4

Can you always extend it to a Latin Square?

With Hall's theorem, you can prove that the answer is yes.

