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Bipartite Matching

Lecture 3: Jan 17
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Bipartite Matching

A graph is bipartite if its vertex set can be partitioned 
into two subsets A and B so that each edge has one 

endpoint in A and the other endpoint in B.

A matching M is a subset of edges so that 
every vertex has degree at most one in M.

A B
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The bipartite matching problem:
Find a matching with the maximum number of edges.

Maximum Matching

A perfect matching is a matching in which every vertex is matched.

The perfect matching problem: Is there a perfect matching?
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• Greedy method?

(add an edge with both endpoints unmatched) 

First Try
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Key Questions

• How to tell if a graph does not have a (perfect) matching?

• How to determine the size of a maximum matching?

• How to find a maximum matching efficiently?
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Hall’s Theorem [1935]:

A bipartite graph G=(A,B;E) has a matching that “saturates” A

if and only if |N(S)| >= |S| for every subset S of A.

S
N(S)

Existence of Perfect Matching
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König [1931]:

In a bipartite graph, the size of a maximum matching 

is equal to the size of a minimum vertex cover.

What is a good upper bound on the size of a maximum matching?

Min-max theorem NP and co-NP

Implies Hall’s theorem.

Bound for Maximum Matching

König [1931]:

In a bipartite graph, the size of a maximum matching 

is equal to the size of a minimum vertex cover.
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Any idea to find a larger matching?

Algorithmic Idea?
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Given a matching M, an M-alternating path is a path that alternates
between edges in M and edges not in M.  An M-alternating path

whose endpoints are unmatched by M is an M-augmenting path.

Augmenting Path
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What if there is no more M-augmenting path?

Prove the contrapositive: 
A bigger matching  an M-augmenting path

1. Consider 

2. Every vertex in       has degree at most 2

3. A component in      is an even cycle or a path

4. Since                           ,      an M-augmenting path!

If there is no M-augmenting path, then M is maximum!

Optimality Condition
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Algorithm
Key:  M is maximum  no M-augmenting path

How to find efficiently?How to find efficiently?
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Finding M-augmenting paths
 Orient the edges (edges in M go up, others go down)
 An M-augmenting path 

a directed path between two unmatched vertices
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Complexity
 At most n iterations
 An augmenting path in            time by a DFS or a BFS 

 Total running time 
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Hall’s Theorem [1935]:

A bipartite graph G=(A,B;E) has a matching that “saturates” A

if and only if |N(S)| >= |S| for every subset S of A.

König [1931]:

In a bipartite graph, the size of a maximum matching 

is equal to the size of a minimum vertex cover.

Idea: consider why the algorithm got stuck…

Minimum Vertex Cover
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Observation: Many short and disjoint augmenting paths.

Idea: Find augmenting paths simultaneously in one search.

Faster Algorithms
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• Matching

• Determinants

• Randomized algorithms

Bonus problem 1 (50%):

Given a bipartite graph with red and blue edges, 

find a deterministic polynomial time algorithm to determine 

if there is a perfect matching with exactly k red edges.

Randomized Algorithm
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Application of Bipartite Matching

Jerry

Marking

Darek TomIsaac

Tutorials Solutions Newsgroup

Job Assignment Problem:
Each person is willing to do a subset of jobs.

Can you find an assignment so that all jobs are taken care of?
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Application of Bipartite Matching

With Hall’s theorem, now you can determine exactly 
when a partial chessboard can be filled with dominos.
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Application of Bipartite Matching

Latin Square: a nxn square, the goal is to fill the square
with numbers from 1 to n so that:

• Each row contains every number from 1 to n.

• Each column contains every number from 1 to n.
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Application of Bipartite Matching

Now suppose you are given a partial Latin Square.

Can you always extend it to a Latin Square?

With Hall’s theorem, you can prove that the answer is yes.


