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Bipartite Matching

A graph is bipartite if its vertex set can be partitioned
into two subsets A and B so that each edge has one

endpoint in A and the other endpoint in B.

A matching M is a subset of edges so that
every vertex has degree at most one in M.




Maximum Matching

The bipartite matching problem:
Find a matching with the maximum number of edges.
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A perfect matching is a matching in which every vertex is matched.

The perfect matching problem: Is there a perfect matching?




First Try

Greedy method?
(add an edge with both endpoints unmatched)
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Key Questions

* How to tell if a graph does not have a (perfect) matching?
* How to determine the size of a maximum matching?

* How to find a maximum matching efficiently?



Existence of Perfect Matching

Hall's Theorem [1935]:
A bipartite graph G=(A,B;E) has a matching that “saturates” A

If and only if |[N(S)| >=|S| for every subset S of A.
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Bound for Maximum Matching

What is a good upper bound on the size of a maximum matching?

Konig [1931]:
In a bipartite graph, the size of a maximum matching

Is equal to the size of a minimum vertex cover.

A

Min-max theorem NP and co-NP

Implies Hall's theorem.




Algorithmic 1dea?
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Any idea to find a larger matching?
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Augmenting Path
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Given a matching M, an M-alternating path is a path that alternates
between edges in M and edges not in M. An M-alternating path

whose endpoints are unmatched by M is an M-augmenting path.

M*=MG&oP
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Optimality Condition

What if there is no more M-augmenting path?

IT there is no M-augmenting path, then M is maximum!

Prove the contrapositive:
A bigger matching = an M-augmenting path

1. Consider H ‘= M U M?%*

Every vertex in [H has degree at most 2

A component in [H is an even cycle or a path

Since |M*| > |M| , - an M-augmenting path!
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Algorithm

Key: Mis maximum < no M-augmenting path

M = 10.
while there is an M-augmenting path P

set M . =M&P
return M.

How to find efficiently?]

11



Finding M-augmenting paths

e Orient the edges (edges in M go up, others go down)
e An M-augmenting path &

a directed path between two unmatched vertices
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Complexity

e At most n iterations
e An augmenting path in O(m) time by a DFS or a BFS

e Total running time O(mn)
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Minimum Vertex Cover

Hall's Theorem [1935]:

A bipartite graph G=(A,B;E) has a matching that “saturates” A
If and only if |[N(S)| >=|S| for every subset S of A.

Konig [1931]:

In a bipartite graph, the size of a maximum matching

Is equal to the size of a minimum vertex cover.

Idea: consider why the algorithm got stuck...
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Faster Algorithms

CHmmm) Eémig [1921], Kuhn [1955k]

= Hopcoroft and Karp [1971,1973], Karzanow
Olynm) [107 3]

Iﬁ[ﬁ”} Ibarra and Moran [1981]
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Alt, Blum, Mehlhorn, and Paul [19491]

O fmmlog, (v /m))

Feder and Motwani [1991, 19595

Observation: Many short and disjoint augmenting paths.

Idea: Find augmenting paths simultaneously in one search.
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Randomized Algorithm

e Matching
e Determinants

e Randomized algorithms

Bonus problem 1 (50%):

Given a bipartite graph with red and blue edges,
find a deterministic polynomial time algorithm to determine

If there is a perfect matching with exactly k red edges.
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Application of Bipartite Matching
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Job Assignment Problem:

Each person is willing to do a subset of jobs.

Can you find an assignment so that all jobs are taken care of?
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Application of Bipartite Matching

dominos

With Hall's theorem, now you can determine exactly
when a partial chessboard can be filled with dominos.
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Application of Bipartite Matching

Latin Square: a nxn square, the goal is to fill the square
with numbers from 1 to n so that:

e Each row contains every number from 1 to n.

e Each column contains every number from 1 to n.
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Application of Bipartite Matching

Now suppose you are given a partial Latin Square.
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Can you always extend it to a Latin Square?

With Hall's theorem, you can prove that the answer is yes.
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