Modelling and Solving the Stable Mamiage problem using Constraint Programming

## SM Formalisation

- Set n men $\mathrm{S}_{\mathrm{M}}=\left\{\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, m_{\mathrm{n}}\right\}$
- Set $n$ women $S_{w}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- Each man ranks the women in $\mathrm{S}_{\mathrm{w}}$ in strict order of preference.
- Each woman ranks the men in $\mathrm{S}_{\mathrm{M}}$ in strict order of preference.
- A matching M is a bijection between the men and women.
- We say a (man, woman) pair (m,w) blocks M if:
- m prefers w to his partner in $\mathbf{M}$, and
- w prefers $m$ to her partner in $\mathbf{M}$.
- A matching that admits no blocking pair is said to be stable
- Can't improve by making an arrangement outside the matching.
- SM was first formalised by David $G$ ale and Lloyd Shapley in 1962.


## Example Stable Mamiage Instance

| $1:$ | 2 | 4 | 1 | 3 |  | $1:$ | 2 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2: | 3 | 1 | 4 | 2 |  | $2:$ | 4 | 3 | 1 | 2 |
| 3: | 2 | 3 | 1 | 4 |  | $3:$ | 1 | 4 | 3 | 2 |
| $4:$ | 4 | 1 | 3 | 2 |  | 4: | 2 | 1 | 4 | 3 |

Men's preferences Women's preferences

## Example Stable Matching

$\left.\begin{array}{llllllllll}\text { 1: } & 2 & \text { (4) } & 1 & 3 & & 1: & 2 & 1 & 4 \\ \text { 2: } & 3 \\ \text { 2: } & 1 & 1 & 4 & 2 & & 2: & 4 & (3) & 1 \\ 2\end{array}\right)$

## Men's preferences Women's preferences

$$
M=\{(1,4),(2,3),(3,2),(4,1)\}
$$

## Extended Gale-Shapley Algorithm

1. assign each person to be free;
2. while (some man $\mathbf{m}$ is free)
3. w := first women on m 's list;
4. if ( $w$ is currently assigned to some man $p$ )
5. assign p to be free;
6. end if
7. assign m to w ;
8. foreach $\left(m^{\prime} \in\right.$ successors $\left._{w}(m)\right)$
9. delete ( $\mathrm{m}^{\prime}, \mathrm{w}$ );
10. end loop
11. end loop

Algorithm complexity $\mathbf{O}\left(\mathbf{n}^{2}\right)$ - so linear in size of problem instance.

## SM and CSP's

- In the last few years SM and CSP's have been the focus of much attention in the literature.
- G ent et al: CP '01 with two SM encodings
- Lustig and Puget, 2001
- Green and Cohen, CP '03
- Aldershof and Carducci, 1999


## Motivation

- CP '01 paper by Gent et al. presented two ways to encode an instance of SM as a Constraint Satisfaction Problem (CSP).
- First encoding: time taken to establish AC is $\mathbf{0}\left(\mathrm{n}^{4}\right)$ - the variables domains after AC corresponded to the G S-lists.
- Second encoding: time taken to establish AC is $\mathbf{0}\left(\mathbf{n}^{2}\right)$ - the variables domains after AC corresponded to a weaker structure.
- Can we find an encoding that finds G S-lists in $\mathbf{O}\left(\mathbf{n}^{2}\right)$ time?
- Shows that CP algorithms give rise to the same structure and the same time complexity as conventional methods.
- Many stable matching problems are NP-hard - can CP help us here?


## Structure of SM

- The Gale-Shapley (G S) algorithm has two possible orientations:
- man-oriented GS (MEGS) algorithm : where the men propose to the women.
- women-oriented GS (WEGS) algorithm : where the women propose to the men.
- Optimality properties of each algorithm:
- MEG S algorithm - man-optimal stable matching $\mathbf{M}_{0}$ - simultaneously the best possible stable matching for all men.
- WEGS algorithm - woman-optimal stable matching $\mathbf{M}_{\mathbf{z}}$ - simultaneously the best possible stable matching for all women.
- Deletions that occur during an execution of either algorithm result in a set of reduced preference lists on termination of each algorithm:
- The MGS-lists for the MEGS algorithm.
- The WGS-lists for the WEG S algorithm.
- The intersection of the MG S-lists and the WG S-lists is called the GS-lists.
- The GS-lists have many important structural properties.


## New CSP Encodings

- We present two new CSP encodings for SM.
- First encoding (nvalued) is simple and easy to understand, presents a natural way to represent SM as CSP.
- Second encoding (4-valued) is more complex but addresses the problem of establishing AC and finding the G S-lists in $\mathbf{O}\left(\mathrm{n}^{2}\right)$. This will only briefly be mentioned here.


## n-valued Encoding

- Encode SM instance I with $\mathbf{n}$ men and $\boldsymbol{n}$ women as a CSP instance J with $\mathbf{2 n}$ variables.
- For each man $\mathrm{m}_{\mathrm{i}} \in \mathrm{S}_{\mathrm{M}}$ we introduce a variable $\mathbf{x}_{\mathrm{i}}$ in J .
- For each woman $w_{j} \in S_{w}$ we introduce a variable $y_{j}$ in $J$.
- The initial domain for each variable is:

$$
\operatorname{dom}\left(x_{\mathrm{i}}\right)=\operatorname{dom}\left(\mathrm{y}_{\mathrm{j}}\right)=\{1,2, \ldots, n\} .
$$

- Constraints:

$$
\begin{aligned}
& \text { 1. } \mathrm{x}_{\mathrm{i}} \geq p \Rightarrow \mathrm{y}_{\mathrm{j}} \leq q(1 \leq i \leq n, 1 \leq p \leq n) \\
& \text { 2. } \mathrm{y}_{\mathrm{j}} \geq q \Rightarrow \mathrm{x}_{\mathrm{i}} \leq p(1 \leq j \leq n, 1 \leq q \leq n) \\
& \text { 3. } \mathrm{y}_{\mathrm{j}} \neq q \Rightarrow \mathrm{x}_{\mathrm{i}} \neq p(1 \leq j \leq n, 1 \leq q \leq n) \\
& \text { 4. } \mathrm{x}_{\mathrm{i}} \neq p \Rightarrow \mathrm{y}_{\mathrm{j}} \neq q(1 \leq i \leq n, 1 \leq p \leq n)
\end{aligned}
$$

In Constraints 1 and $4, j$ is such that $\operatorname{rank}\left(m_{i}, w_{j}\right)=p$ and also $\operatorname{rank}\left(w_{j}, m_{i}\right)=q$. In Constraints 2 and 3 ; $i$ is such that $\operatorname{rank}\left(w_{j}, m_{i}\right)=q$ and also $\operatorname{rank}\left(m_{i}, w_{j}\right)=p$.

## n-valued Properties and Structure

- We prove that after AC propagation the variables domains correspond to the GS-lists.
- AC propagation in encoding takes $\mathbf{0}\left(\mathrm{n}^{3}\right)$ time.
- We also prove that we can enumerate all stable matchings in a failure free manner.


## 4-valued Encoding

- Far more complex, extends second encoding in CP '01 paper.
- Name arises from the fact that each variable's domain contains 4 values
- 1- is always in the domain, ensures domain never becomes empty.
- 0 - corresponds to a proposal.
- 2 - corresponds to a deletion during the MEGS algorithm.
- 3 - corresponds to a deletion during the WEG S algorithm.
- Gives us the G S-lists after AC propagation.
- AC can be established in $\mathbf{0}\left(\mathrm{n}^{2}\right)$ time.
- Failure free enumeration of all stable matchings also holds.


## Summary

- Presented two new encodings for SM:
- Time complexities $0\left(n^{3}\right)$ and $0\left(n^{2}\right)$.
- AC propagation finds the G S-lists.
- Can be extended to SM with incomplete lists.
- First encoding has been extended to Hospitals / Residents problem (HR)
- Will be presented at workshop in CP '05.
- Extension to NP-hard variants
- HR with couples
- HR with ties under weak stability

