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reas & CPU Schedulng

* Threads » CPU Scheduling

e Qverview

 Basic Concepts

 Multicore Programming « Scheduling Criteria

e Multithreading Models « Scheduling Algorithms

* Implicit Threading » Thread Scheduling

* Threading Issues « Multiple-Processor Scheduling

» Real-Time CPU Scheduling
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e

- Example of Multilevel

Feedback Queue

 Three queues: il .

* Q, - RR with time quantum 8 milliseconds ¢

e Q,—RRtime quantum 16 milliseconds

e Q,—FCFS = »
 Scheduling | duenam =0

* A new job enters queue Q, which is served FCFS

 When it gains CPU, job receives 8 - N
milliseconds i FCFS

 Ifit does not finish in 8 milliseconds, job is
moved to queue Q,

« AtQ, job is again served FCFS and receives 16
additional milliseconds

 Ifitstill does not complete, it is preempted
and moved to queue Q,
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‘Thread Scheduling

» Distinction between user-level and kernel-level threads
» When threads supported, threads scheduled, not processes
» Many-to-one and many-to-many models, thread library schedules user-level threads

to run on LWP

* Known as process-contention scope (PCS) since scheduling competition is

within the process
» Typically done via priority set by programmer

» Kernel thread scheduled onto available CPU is system-contention scope (SCS) —

competitionamong all threads in system
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Pthread Scheduling

» API allows specifying either PCS or SCS during thread creation
« PTHREAD SCOPE_PROCESS schedules threads using PCS scheduling
« PTHREAD SCOPE_SYSTEM schedules threads using SCS scheduling

e Can be limited by OS - Linux and Mac OS X only allow
PTHREAD SCOPE _SYSTEM
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| Multiple-Processor
Lz Scheduling

. CPU scheduling more complex when multiple CPUs are available
 Homogeneous processors within a multiprocessor

« Asymmetric multiprocessing —only one processor accesses the system data
structures, alleviating the need for data sharing

o Symmetric multiprocessing (SMP) —each processor is self-scheduling, all

processes in common ready queue, or each has its own private queue of ready
processes

e Currently, most common

* Processor affinity — process has affinity for processor on which it is currently
running

o soft affinity
e hard affinity
o Variationsincluding processor sets

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS



CPU CPU

fast access % fast access
Ss

memory memory

computer

Note that memory-placement algorithms can also consider affinity
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V uItiIe-Processor Scheduling
— Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency
* Load balancing attempts to keep workload evenly distributed

« Push migration — periodic task checks load on each processor, and if

found pushes task from overloaded CPU to other CPUs

« Pull migration —idle processors pulls waiting task from busy processor
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Multicore Processors

» Recent trend to place multiple processor cores on same physical chip
« Faster and consumes less power

« Multiple threads per core also growing

» Takes advantage of memory stall to make progress on another thread

while memory retrieve happens
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e Can present obvious challenges

o Soft real-time systems—no
guarantee as to when critical real-
time process will be scheduled

e Hard real-time systems —task
must be serviced by its deadline

« Two types of latencies affect
performance
1.Interrupt latency - time from

arrival of interrupt to start of
routine that services interrupt

2.Dispatch latency - time for
schedule to take current process off
CPU and switch to another
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event response to event

« Conflict phase of dispatch
o response interval £

Iatency: process made

interrupt available
processing
e ——

1.Preemption of any

<+—————— dispatch latency ———»

process running in i
kernel mode exectrtion
Da—

«—— conflicts —»e«—— dispatch —»;

2.Release by low-priority

Process of resources
time

needed by high-

priority processes
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Criority-based Scheduling

« For real-time scheduling, scheduler must support preemptive, priority-based
scheduling

» For hard real-time must also provide ability to meet deadlines

* Processes have new characteristics: periodic ones require CPU at constant
Intervals

e Has processing time t, deadline d, period p
e 0<st<sd<p
» Rate of periodic task is 1/p

P |
|

o}
w

| \ Il ' Time
period; periods periods

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS



Mrtualization and Scheduling

* Virtualization software schedules multiple guests onto CPU(s)

« Each guest doing its own scheduling
* Not knowing it doesn’t own the CPUs
e Can result in poor response time

» Can effect time-of-day clocks in guests

e Can undo good scheduling algorithm efforts of guests
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A priority is assigned based on the inverse of its period

Shorter periods = higher priority;

Longer periods = lower priority

P, is assigned a higher priority than P.,.

Deadlines = Py Ps P, P, P>
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Earliest Deadline First Scheduling (EDF)

* Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority

Deadlines P4 Po P P Ps

. | ! Vol
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Proportional Share Scheduling

T shares are allocated among all processes in the system
* An application receives N shareswhere N<T

 This ensures each application will receive N/ T of the
total processor time
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3 POSIX Real-Time Scheduling

 The POSIX.1b standard
* API provides functions for managing real-time threads
» Defines two scheduling classes for real-time threads:

e SCHED FIFO - threads are scheduled using a FCFS strategy with a FIFO queue.

There is no time-slicing for threads of equal priority

 SCHED RR -similar to SCHED FIFO except time-slicing occurs for threads of

equal priority
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