UNIT |1

THREADS & CPU SCHEDULNG

CoODE

EWREDGED

o CALL LLT - 3

-
e Ii E RATI NG

= TIME & ﬂ-;

= |:—.l.-—|..i.|_._

SERV

Tl) FEEEEF(}lJFtE:iEEE

F{E:F“FH

i

SDFTWA

reas & CPU Schedulng

* Threads » CPU Scheduling

e Qverview

 Basic Concepts

 Multicore Programming « Scheduling Criteria

e Multithreading Models « Scheduling Algorithms

* Implicit Threading » Thread Scheduling

* Threading Issues « Multiple-Processor Scheduling

» Real-Time CPU Scheduling

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

e

- Example of Multilevel

Feedback Queue

 Three queues: il .

* Q, - RR with time quantum 8 milliseconds ¢

e Q,—RRtime quantum 16 milliseconds

e Q,—FCFS = »
 Scheduling | duenam =0

* A new job enters queue Q, which is served FCFS

 When it gains CPU, job receives 8 - N
milliseconds i FCFS

 Ifit does not finish in 8 milliseconds, job is
moved to queue Q,

« AtQ, job is again served FCFS and receives 16
additional milliseconds

 Ifitstill does not complete, it is preempted
and moved to queue Q,

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

‘Thread Scheduling

» Distinction between user-level and kernel-level threads
» When threads supported, threads scheduled, not processes
» Many-to-one and many-to-many models, thread library schedules user-level threads

to run on LWP

* Known as process-contention scope (PCS) since scheduling competition is

within the process
» Typically done via priority set by programmer

» Kernel thread scheduled onto available CPU is system-contention scope (SCS) —

competitionamong all threads in system

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Pthread Scheduling

» API allows specifying either PCS or SCS during thread creation
« PTHREAD SCOPE_PROCESS schedules threads using PCS scheduling
« PTHREAD SCOPE_SYSTEM schedules threads using SCS scheduling

e Can be limited by OS - Linux and Mac OS X only allow
PTHREAD SCOPE _SYSTEM

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

| Multiple-Processor
Lz Scheduling

. CPU scheduling more complex when multiple CPUs are available
 Homogeneous processors within a multiprocessor

« Asymmetric multiprocessing —only one processor accesses the system data
structures, alleviating the need for data sharing

o Symmetric multiprocessing (SMP) —each processor is self-scheduling, all

processes in common ready queue, or each has its own private queue of ready
processes

e Currently, most common

* Processor affinity — process has affinity for processor on which it is currently
running

o soft affinity
e hard affinity
o Variationsincluding processor sets

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

CPU CPU

fast access % fast access
Ss

memory memory

computer

Note that memory-placement algorithms can also consider affinity

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

V uItiIe-Processor Scheduling
— Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency
* Load balancing attempts to keep workload evenly distributed

« Push migration — periodic task checks load on each processor, and if

found pushes task from overloaded CPU to other CPUs

« Pull migration —idle processors pulls waiting task from busy processor

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Multicore Processors

» Recent trend to place multiple processor cores on same physical chip
« Faster and consumes less power

« Multiple threads per core also growing

» Takes advantage of memory stall to make progress on another thread

while memory retrieve happens

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

R e
. ;
e -

e Multithreaded Multicore System

C compute cycle WYy memory stall cycle
thread . M C M C M C M
T
time
- i I
il - ¥ o M o ¥ o
threads . I I v C M c M c
Hme

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

e Can present obvious challenges

o Soft real-time systems—no
guarantee as to when critical real-
time process will be scheduled

e Hard real-time systems —task
must be serviced by its deadline

« Two types of latencies affect
performance
1.Interrupt latency - time from

arrival of interrupt to start of
routine that services interrupt

2.Dispatch latency - time for
schedule to take current process off
CPU and switch to another

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

task T running

Real-Time CPU Scheduling

interrupt

determine
interrupt

type

context

switch

ISR

interrupt
latency

time

eal-Time CPU ScheduITr;a o
(Cont.)

event response to event

« Conflict phase of dispatch
o response interval £

Iatency: process made

interrupt available
processing
e ——

1.Preemption of any

<+—————— dispatch latency ———»

process running in i
kernel mode exectrtion
Da—

«—— conflicts —»e«—— dispatch —»;

2.Release by low-priority

Process of resources
time

needed by high-

priority processes

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Criority-based Scheduling

« For real-time scheduling, scheduler must support preemptive, priority-based
scheduling

» For hard real-time must also provide ability to meet deadlines

* Processes have new characteristics: periodic ones require CPU at constant
Intervals

e Has processing time t, deadline d, period p
e 0<st<sd<p
» Rate of periodic task is 1/p

P |
|

o}
w

| \ Il ' Time
period; periods periods

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Mrtualization and Scheduling

* Virtualization software schedules multiple guests onto CPU(s)

« Each guest doing its own scheduling
* Not knowing it doesn’t own the CPUs
e Can result in poor response time

» Can effect time-of-day clocks in guests

e Can undo good scheduling algorithm efforts of guests

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

A priority is assigned based on the inverse of its period

Shorter periods = higher priority;

Longer periods = lower priority

P, is assigned a higher priority than P.,.

Deadlines = Py Ps P, P, P>

| ' | !

P P2 Fi [Pal, | R P2 A Pol, |
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Ghn i
- .
. .
i s

WNSTITUTIONS,

Missed Deadlines with
Rate Monotonic Scheduling

Deadlines P4 Po P4 P, P

! : ‘ Vo

P, =
| I | | | | | | | | | |
O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Earliest Deadline First Scheduling (EDF)

* Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority

Deadlines P4 Po P P Ps

. | ! Vol

||:)1 | | | | ||:)1 | |P2 ||:)1 | |P2| | |
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

Proportional Share Scheduling

T shares are allocated among all processes in the system
* An application receives N shareswhere N<T

 This ensures each application will receive N/ T of the
total processor time

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

_
o

3 POSIX Real-Time Scheduling

 The POSIX.1b standard
* API provides functions for managing real-time threads
» Defines two scheduling classes for real-time threads:

e SCHED FIFO - threads are scheduled using a FCFS strategy with a FIFO queue.

There is no time-slicing for threads of equal priority

 SCHED RR -similar to SCHED FIFO except time-slicing occurs for threads of

equal priority

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10t Edition, John Wiley &
Sons, Inc., 2018.
2.Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018.

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

REFERENCES

1. William Stallings, “Operating Systems: Internals and Design Principles”,9t"Edition, Prentice Hall of India., 2018.
2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach” 3"Edition, Tata McGraw hill 2016.
3. P.C.Bhatt, “An Introduction to Operating Systems—Concepts and Practice" 4" Edition, Prentice Hall of India., 2013.

THANK YOU

Dr.B.Anuradha/ ASP / CSD/ SEM 4 / OS

