
UNIT 

THREADS & CPU SCHEDULNG

UNIT II

THREADS & CPU SCHEDULNG



Threads & CPU Schedulng
• Threads 

• Overview

• Multicore Programming

• Multithreading Models

• Implicit Threading

• Threading Issues

• CPU Scheduling

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Threads & CPU Schedulng
CPU Scheduling

• Basic Concepts

• Scheduling Criteria 

• Scheduling Algorithms

• Thread Scheduling

• Multiple-Processor Scheduling

• Real-Time CPU Scheduling



Example of Multilevel 

• Three queues: 
• Q0 – RR with time quantum 8 milliseconds
• Q1 – RR time quantum 16 milliseconds
• Q2 – FCFS

• Scheduling
• A new job enters queue Q0 which is served FCFS

• When it gains CPU, job receives 8 
milliseconds

• If it does not finish in 8 milliseconds, job is 
moved to queue Q1

• At Q1 job is again served FCFS and receives 16 
additional milliseconds

• If it still does not complete, it is preempted 
and moved to queue Q2

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Example of Multilevel 
Feedback Queue

FCFS

If it does not finish in 8 milliseconds, job is 

job is again served FCFS and receives 16 

If it still does not complete, it is preempted 



Thread Scheduling

• Distinction between user-level and kernel-level threads

• When threads supported, threads scheduled, not processes

• Many-to-one and many-to-many models, thread library schedules user

to run on LWP

• Known as process-contention scope (PCS

within the process

• Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU is 

competition among all threads in system
Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Thread Scheduling

level threads

When threads supported, threads scheduled, not processes

many models, thread library schedules user-level threads 

PCS) since scheduling competition is 

Typically done via priority set by programmer

Kernel thread scheduled onto available CPU is system-contention scope (SCS) –



Pthread

• API allows specifying either PCS or SCS during thread creation

• PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling

• PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

• Can be limited by OS – Linux and Mac OS X only allow 

PTHREAD_SCOPE_SYSTEM

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Pthread Scheduling

API allows specifying either PCS or SCS during thread creation

PTHREAD_SCOPE_PROCESS schedules threads using PCS scheduling

PTHREAD_SCOPE_SYSTEM schedules threads using SCS scheduling

Linux and Mac OS X only allow 



Multiple

• CPU scheduling more complex when multiple CPUs are available
• Homogeneous processors within a multiprocessor
• Asymmetric multiprocessing – only one processor accesses the system data 

structures, alleviating the need for data sharing
• Symmetric multiprocessing (SMP) – each processor is self

processes in common ready queue, or each has its own private queue of ready 
processes

• Currently, most common
• Processor affinity – process has affinity for processor on which it is currently 

running
• soft affinity
• hard affinity
• Variations including processor sets

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multiple-Processor 
Scheduling

CPU scheduling more complex when multiple CPUs are available
within a multiprocessor

only one processor accesses the system data 
structures, alleviating the need for data sharing

each processor is self-scheduling, all 
processes in common ready queue, or each has its own private queue of ready 

process has affinity for processor on which it is currently 



NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

NUMA and CPU Scheduling

placement algorithms can also consider affinity



Multiple-
– Load Balancing

• If SMP, need to keep all CPUs loaded for efficiency

• Load balancing attempts to keep workload evenly distributed

• Push migration – periodic task checks load on each processor, and if 

found pushes task from overloaded CPU to other CPUs

• Pull migration – idle processors pulls waiting task from busy processor

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

-Processor Scheduling 
Load Balancing

If SMP, need to keep all CPUs loaded for efficiency

attempts to keep workload evenly distributed

periodic task checks load on each processor, and if 

found pushes task from overloaded CPU to other CPUs

idle processors pulls waiting task from busy processor



Multicore

• Recent trend to place multiple processor cores on same physical chip

• Faster and consumes less power

• Multiple threads per core also growing

• Takes advantage of memory stall to make progress on another thread 

while memory retrieve happens

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multicore Processors

Recent trend to place multiple processor cores on same physical chip

Multiple threads per core also growing

Takes advantage of memory stall to make progress on another thread 



Multithreaded 

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Multithreaded Multicore System



Real-

• Can present obvious challenges
• Soft real-time systems – no 

guarantee as to when critical real-
time process will be scheduled

• Hard real-time systems – task 
must be serviced by its deadline

• Two types of latencies affect 
performance

1.Interrupt latency – time from 
arrival of interrupt to start of 
routine that services interrupt

2.Dispatch latency – time for 
schedule to take current process off 
CPU and switch to another

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

-Time CPU Scheduling



Real

• Conflict phase of dispatch 

latency:

1.Preemption of any 

process running in 

kernel mode

2.Release by low-priority 

process of resources 

needed by high-

priority processes

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Real-Time CPU Scheduling 
(Cont.)



Priority

• For real-time scheduling, scheduler must support preemptive, priority
scheduling

• For hard real-time must also provide ability to meet deadlines
• Processes have new characteristics: periodic

intervals
• Has processing time t, deadline d, period 
• 0 ≤ t ≤ d ≤ p
• Rate of periodic task is 1/p

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Priority-based Scheduling

time scheduling, scheduler must support preemptive, priority-based 

time must also provide ability to meet deadlines
periodic ones require CPU at constant 

period p



Virtualization and Scheduling

• Virtualization software schedules multiple guests onto CPU(s)

• Each guest doing its own scheduling

• Not knowing it doesn’t own the CPUs

• Can result in poor response time

• Can effect time-of-day clocks in guests

• Can undo good scheduling algorithm efforts of guests

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Virtualization and Scheduling

Virtualization software schedules multiple guests onto CPU(s)

t own the CPUs

day clocks in guests

Can undo good scheduling algorithm efforts of guests



Rate Montonic

• A priority is assigned based on the inverse of its period

• Shorter periods = higher priority;

• Longer periods = lower priority

• P1 is assigned a higher priority than P2.

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Montonic Scheduling

A priority is assigned based on the inverse of its period



Missed Deadlines 
Rate Monotonic Scheduling

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Missed Deadlines with
Rate Monotonic Scheduling



Earliest Deadline First Scheduling (EDF)

• Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Earliest Deadline First Scheduling (EDF)

Priorities are assigned according to deadlines:

the earlier the deadline, the higher the priority;
the later the deadline, the lower the priority



Proportional Share Scheduling

• T shares are allocated among all processes in the system

• An application receives N shares where 

• This ensures each application will receive 
total processor time

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

Proportional Share Scheduling

shares are allocated among all processes in the system

shares where N < T

This ensures each application will receive N / T of the 



POSIX Real

• The POSIX.1b standard

• API provides functions for managing real

• Defines two scheduling classes for real-

• SCHED_FIFO - threads are scheduled using a FCFS strategy with a FIFO queue. 

There is no time-slicing for threads of equal 

• SCHED_RR - similar to SCHED_FIFO except time

equal priority

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

POSIX Real-Time Scheduling

provides functions for managing real-time threads

-time threads:

threads are scheduled using a FCFS strategy with a FIFO queue. 

slicing for threads of equal priority

similar to SCHED_FIFO except time-slicing occurs for threads of 



TEXT BOOK
1. Abraham Silberschatz, Peter B. Galvin, “Operating System Concepts”, 10

Sons, Inc., 2018.

2. Jane W. and S. Liu. “Real-Time Systems”. Prentice Hall of India 2018. 

3. Andrew S Tanenbaum, Herbert Bos, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9

2. D.M.Dhamdhere, “Operating Systems: A Concept based Approach”, 3

3. P.C.Bhatt, “An Introduction to Operating Systems–Concepts and Practice",4

REFERENCES

Dr.B.Anuradha / ASP / CSD/ SEM 4 / OS

, Peter B. Galvin, “Operating System Concepts”, 10th Edition, John Wiley & 

Time Systems”. Prentice Hall of India 2018. 

, Modern Operating Pearson , 2015.

1. William Stallings, “Operating Systems: Internals and Design Principles”,9th Edition, Prentice Hall of India., 2018. 

, “Operating Systems: A Concept based Approach”, 3rdEdition, Tata McGraw hill 2016.

Concepts and Practice",4th Edition, Prentice Hall of India., 2013.

THANK YOU


