

TOPIC 2.7- Correlation

1)

Find the coefficient of correlation between x and & from the following data:

X	65	66	67	67	68	69	70	72
À	67	68	65	88	72	72	69	71

Y 67 68 65 68 72 72 69 71

Correlation coefficient
$$Y(x,y) = \frac{\text{Cov}(x,y)}{\sigma_x \sigma_y}$$

where $\text{Cov}(x,y) = \frac{\sum xy}{n} - \overline{x}\overline{y}$
 $\sigma_x = \sqrt{\frac{1}{n}} \sum x^2 - (\overline{x})^2$ and $\sigma_y = \sqrt{\frac{1}{n}} \sum y^2 - (\overline{y})^2$

×	y	U = x - 00	N = N - PR	UV	n,	12
1	67	-3	-1	3	9	1
65	68	- 2	0	0	4	0
66	65	-1	-3	3	١	9
67	68	-1	0	0	1	0
68	72	0	4	0 4	0	16
69	72	1	4			
70	69	2	-1	2	4	.1
72	11	4.	3	. 15	16	9
	1	0	8	24	36	52

$$\overline{U} = \sum_{n} U = 0$$
 $\overline{V} = \sum_{n} V = \frac{8}{8} = 1$
 $Cov(U, V) = \sum_{n} UV = \frac{24}{8} = 3$

$$\sigma_{x} = \sqrt{\frac{\sum u^{2}}{n} - \overline{u}^{2}} = \sqrt{\frac{36}{8}} = 2.1213$$

$$\sigma_{y} = \sqrt{\frac{\sum v^{2}}{n} - \overline{v}^{2}} = \sqrt{\frac{52}{8} - 1} = \sqrt{\frac{44}{8}}$$

$$= 2.3452$$

$$\gamma(x,y) = \gamma(u,v) = \frac{3}{2 \cdot 1213 \times 2 \cdot 3452}$$

Two random variables
$$X$$
 and Y have the out pdf given by $f(x,y) = \begin{cases} K(1-x^2y); 0 \le x, y \le 1 \\ 0, 0 \end{cases}$, otherwise

i) Find K (ii) Obtain the marginal probability density untions of x and y (iii) Also find the correlation refficient between x and y.

i)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$$

$$\Rightarrow \int_{0}^{1} \int_{0}^{1} K(1-x^{2}y) dx dy = 1$$

$$\Rightarrow K \int_{0}^{1} \left[x - \frac{x^{3}y}{3} \right]_{0}^{1} dy = 1$$

$$\Rightarrow K \int_{0}^{1} \left[1 - \frac{y}{3} \right]_{0}^{1} dy = 1 \Rightarrow K \left[y - \frac{y^{2}}{6} \right]_{0}^{1} = 1$$

$$\Rightarrow K \left[1 - \frac{1}{6} \right] = 1 \Rightarrow K \left[\frac{5}{6} \right] = 1$$

$$K = \frac{6}{5}$$

(ii) Marginal density function of
$$x$$

$$f(x) = \int_{-\infty}^{\infty} f(x,y) dy = \int_{0}^{1} \frac{6}{5} (1-x^{2}y) dy$$

$$= \frac{6}{5} \left[y - \frac{x^{2}y^{2}}{2} \right]_{0}^{1} = \frac{6}{5} \left[1 - \frac{x^{2}}{2} \right]$$

$$= \frac{3}{5} \left(2 - x^{2} \right), \quad 0 \le x \le 1$$

Marginal density function of y
$$f(y) = \int_{-\infty}^{\infty} f(x,y) dx = \int_{0}^{1} \frac{6}{5} (1-z^{2}y) dx$$

$$= \frac{6}{5} \left[x - \frac{x^{2}y}{3} \right]_{0}^{1} = \frac{6}{5} \left[1 - \frac{y}{3} \right]$$

$$= \frac{2}{5} (3-y), \quad 0 \le y \le 1$$

$$= \frac{2}{5} \left[(3-y) \right]_{0}^{1} = \frac{3}{5} \left[(2x-x^{3}) \right]_{0}^{1} = \frac{3}{5} \left[(2x^{2}-x^{2}) \right]_{0}^{1}$$

$$= \frac{3}{5} \left[(2x-x^{3}) \right]_{0}^{1} = \frac{3}{5} \left[(2x^{2}-x^{2}) \right]_{0}^{1}$$

$$= \frac{3}{5} \left[(2x^{2}-x^{3}) \right]_{0}^{1} = \frac{9}{20}$$

$$E[X] = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1} x^{2} \frac{3}{5} (2-z^{2}) dx$$

$$= \frac{3}{5} \int_{0}^{1} \left[(2x^{2}-x^{4}) \right]_{0}^{1} dx = \frac{3}{5} \left[(2x^{3}-x^{5}) \right]_{0}^{1}$$

$$= \frac{3}{5} \left[(2x^{2}-x^{4}) \right]_{0}^{1} dx = \frac{3}{5} \left[(2x^{3}-x^{5}) \right]_{0}^{1}$$

$$= \frac{3}{5} \left[(2x^{3}-x^{4}) \right]_{0}^{1} dx = \frac{3}{5} \left[(2x^{3}-x^{5}) \right]_{0}^{1}$$

$$E[Y] = \int_{-\infty}^{\infty} y f(y) dy = \int_{0}^{1} y \frac{2}{5} (3-y) dy$$

$$= \frac{2}{5} \int_{0}^{1} (3y-y^{2}) dy = \frac{2}{5} \left[\frac{3y^{2}}{2} - \frac{y^{3}}{3} \right]_{0}^{2}$$

$$= \frac{2}{5} \left[\frac{3}{2} - \frac{1}{3} \right] = \frac{2}{5} \left[\frac{9-2}{6} \right] = \frac{7}{15}$$

$$E[Y^{2}] = \int_{-\infty}^{\infty} y^{2} f(y) dy = \int_{0}^{1} y^{2} \frac{2}{5} (3-y) dy$$

$$= \frac{2}{5} \int_{0}^{1} (3y^{2} - y^{3}) dy = \frac{2}{5} \left[\frac{3y^{3}}{3} - \frac{y^{4}}{4} \right]_{0}^{1}$$

$$= \frac{2}{5} \left[1 - \frac{1}{4} \right] = \frac{3}{10}$$

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} xy \frac{6}{5} (1-x^{2}y) dx dy$$

$$= \frac{6}{5} \int_{0}^{1} \left[\frac{xy - x^{3}y^{2}}{4} \right] dy$$

$$= \frac{6}{5} \int_{0}^{1} \left[\frac{x^{2}y}{4} - \frac{x^{4}y^{4}}{4} \right]_{0}^{1} dy$$

$$= \frac{6}{5} \int_{0}^{1} \left[\frac{y}{4} - \frac{y^{2}}{4} \right] dy = \frac{6}{5} \left[\frac{y^{2}}{4} - \frac{y^{3}}{12} \right]_{0}^{1}$$

$$= \frac{6}{5} \int_{0}^{1} \left[\frac{y}{4} - \frac{y^{2}}{4} \right] dy = \frac{6}{5} \left[\frac{2}{12} \right] = \frac{1}{15}$$

$$Cov(x,y) = E[xy] - E[x] E[xy]$$

= $\frac{1}{5} - \frac{q^3}{20} \frac{7}{15} = \frac{1}{5}$

$$Von(x) = \frac{1}{25} - \left(\frac{9}{20}\right)^{2} = \frac{7}{25} - \frac{81}{400}$$

$$= \frac{112 - 81}{400} = \frac{31}{400}$$

$$Von(y) = \frac{3}{10} - \left(\frac{7}{15}\right)^{2} = \frac{3}{10} - \frac{49}{225}$$

$$= \frac{135 - 98}{450} = \frac{37}{450}$$

$$\Upsilon(x,y) = \frac{\text{Cov}(x,y)}{G_{x}} = \frac{-\frac{1}{100}}{\sqrt{\frac{31}{400}}\sqrt{\frac{31}{450}}}$$

$$= -0.1253$$