

TOPIC: 2.2 Joint distributions Discrete Random variables

Joint Probability Function or Joint Probability
Mass Function of the Discrete r.v x and x

For two discrete random variables x and y, we write the probability that x will take the value y_j . The function as $P[x=x_i, y=y_j]$. The function

 $P[X=x_i, y=y_j] = P(x_i, y_j) = P_{ij}$ is called the Joint probability function for discrete

random variables X and Y. Pij should salisfies the following conditions

(ii)
$$\sum_{j} \sum_{i} P_{ij} = 1$$

Joint Probability Distribution of (x, y)The set of triplets $\{x_i, y_j, p_{ij}\}$, $i=1,2,\cdots n$, $j=1,2,\cdots m$ is called the joint

probability distribution of (x,y) and it can be represented in the form of table as given below

X	41.	92	 y _m	P(x = x;)
χ	P.,	P ₁₂	 Pim	þ _i .
α_{1}	P21	þ,,	 p _{2m}	þ <u>.</u>
:	-!	; ·	!	
a _n	Pn	P _{n2}	 P _{nm}	P _n .
P(>=yj)	þ.,	P.2	 P.m	1

Marginal probability function of x

If the joint probability distribution of two random variables x and x is given, then

the marginal probability function of x is given by

$$P_{x}(x_{i}) = P(x = x_{i})$$

$$= P_{ii} + P_{i2} + \cdots + P_{im}$$

$$= \sum_{j=1}^{m} P_{ij} = P_{i}.$$

Marginal probability function of y

If the joint probability distribution of two random variables x and x is given. Then the marginal probability function of x is given by

$$P_{y}(y_{i}) = P[y = y_{i}]$$

$$= P_{ij} + P_{2j} + \cdots + P_{nj}$$

$$= \sum_{i=1}^{n} P_{ij} = P_{ij}$$

Conditional Probabilities

The conditional probability function of x given y = y; is given by

"P[
$$x = \alpha_i/y = y_j$$
] =
$$\frac{P[x = \alpha_i, y = y_j]}{P[y = y_j]} = \frac{P_{ij}}{P_{ij}}$$

The conditional probability function of Y given $X = x_i$ is given by

$$P[y=y_j/x=x_i] = \frac{P[y=y_j, x=x_i]}{P[x=x_i]} = \frac{P_{ij}}{P_{i}}$$

1) The joint probability mass function of a two timensional random variable (x, y) is given by P(x, y) = K(2x+y); x=1, 2 and y=1, 2 where K is constant. Find the value of K.

XX	1	2	P(x=x)
1	3 K	4K	7ĸ
2	5K	6K	11K
P(y=y)	8K	lok	18K

$$\sum_{j} \sum_{i} P(x, y) = 1 \implies \frac{18k = 1}{k = \frac{1}{18}}$$

(2) For the bivariate probability distribution of (x, x) ziven below

×Y	١	2	3	4	5	Ь
0	0	O	1/32	2/32	2/32	3/32
1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64

Find the marginal distributions, conditional distribution of x given y = 1 and conditional distribution of y given x = 0.

The marginal distributions are given in the table below.

Y	1	2	3	Λ	5	6	P(x=x)
X				<i>¬</i>			
0	0	0	1/32	² / ₃₂	2/32	3/32	8/32_
,	1/16	1/16	1/8	1/8	1/8	1/8	10/16
2	1/32	1/32	1/64	1/64	0	2/64	8/64
P(y=y)	3/32	3/32	11/64	13/64	6/32	16/64	1

Conditional distribution of x given Y = 1.

$$P(x=0 | y=1) = \frac{P(x=0, y=1)}{P(y=1)} = 0$$

$$P(x=1/y=1) = \frac{P(x=1,y=1)}{P(y=1)} = \frac{\frac{1}{16}}{\frac{3}{32}} = \frac{2}{3}$$

$$P(x=2/y=1) = \frac{P(x=2, y=1)}{P(y=1)} = \frac{\frac{1}{32}}{\frac{3}{32}} = \frac{1}{3}$$

Conditional distribution of Y given x = 0

$$P(y=1/x=0) = \frac{P(x=0,y=1)}{P(x=0)} = 0$$

$$P(y=2|x=0) = \frac{P(x=0, y=2)}{P(x=0)} = 0$$

$$P(y=3|x=0) = \frac{P(x=0, y=3)}{P(x=0)} = \frac{\frac{1}{32}}{\frac{2}{32}} = \frac{1}{8}$$

$$P(y=4|x=0) = \frac{P(x=0, y=4)}{P(x=0)} = \frac{\frac{2}{32}}{\frac{2}{32}} = \frac{\frac{2}{8}}{2}$$

$$P(y=5|x=0) = \frac{P(x=0, y=5)}{P(x=0)} = \frac{\frac{2}{32}}{\frac{8}{32}} = \frac{\frac{2}{32}}{\frac{8}{32}}$$

$$P(y=6|x=0) = \frac{P(x=0, y=6)}{P(x=0)} = \frac{\frac{3}{32}}{\frac{8}{32}} = \frac{\frac{3}{32}}{\frac{8}{32}}$$

The joint pmf of (x,y) is given by p(x,y) = k(2x+3)y, x = c,1,2; y = 1,2,3. Find all the marginal and conditional probability distributions. Also find the probability distribution of (x+y).

The marginal distributions are given in the table below.

X	1	2	3	P(x = x)
0	3K	6k	9K	18 K
	БK	8K	1114	24 K
2	٦K	IOK	13K	30 K
P (Y=y)	15 K	24 K	33 K	72K

$$\sum_{j} \sum_{i} p(x_i, y_j) = 1 \implies \frac{72k}{k} = 1$$

			the facility payment and the	
X	1	2	3	P(x=x)
0	3/12	6/12	9/72	18/12
,	5/72	8/12	11/12	24/72
2	7/12	10/12	13/72	30/72
P(Y=4)	15/72	24/72	33/72	1

Conditional distribution of x given x = "

$$\frac{1}{P[x=0|y=1]} = \frac{P[x=0,y=1]}{P[y=1]} = \frac{\frac{3}{12}}{\frac{15}{12}} = \frac{1}{5}$$

$$P[x=1/y=1] = \frac{P[x=1,y=1]}{P[y=1]} = \frac{5/72}{15/72} = \frac{1}{3}$$

$$P[x=2|y=1] = P[x=2, y=1] = \frac{7/72}{15/72} = \frac{7}{15}$$

when Y=2

$$\frac{P[x=0/y=2]}{P[y=2]} = \frac{P[x=0,y=2]}{P[y=2]} = \frac{6/12}{24/12} = \frac{1}{4}$$

$$P[y=2]$$

$$P[x=1/y=2] = \frac{P[x=1,y=2]}{P[y=2]} = \frac{8/72}{24/72} = \frac{1}{3}$$

$$P[x=2/y=2] = \frac{P[x=2,y=2]}{P[y=2]} = \frac{10/72}{24/72} = \frac{5}{12}$$

whem
$$y=3$$

$$P[x=0/y=3] = \frac{P[x=0, y=3]}{P[y=3]} = \frac{9/72}{33/72} = \frac{3}{11}$$

$$P[x=1/y=3] = P[x=1, y=3] = \frac{11/72}{33/72} = \frac{1}{3}$$

$$P[x=2/y=3] = \frac{P[x=2, y=3]}{P[y=3]} = \frac{\frac{13}{12}}{\frac{33}{12}} = \frac{\frac{13}{12}}{\frac{33}{12}}$$

Conditional distribution of y given X = X

$$P[y=1/x=0] = \frac{P[x=0, y=1]}{P[x=0]} = \frac{3/72}{18/72} = \frac{1}{6}$$

$$P[y=2|x=0] = \frac{P[x=0, y=2]}{P[x=0]} = \frac{6/72}{18/72} = \frac{1}{3}$$

$$P[y=3/x=0] = \frac{P[x=0,y=3]}{P[x=0]} = \frac{9/72}{18/72} = \frac{1}{2}$$

when
$$x = 1$$

$$P[y=1/x=1] = \frac{P[x=1,y=1]}{P[x=1]} = \frac{5/72}{24/72} = \frac{5}{24}$$

$$P[y=2/x=1] = \frac{P[x=1,y=2]}{P[x=1]} = \frac{8/72}{24/72} = \frac{1}{3}$$

$$P[y=3/x=1] = \frac{P[x=1,y=3]}{P[x=1]} = \frac{11/72}{24/72} = \frac{11}{24}$$

$$\frac{\text{when } x=2}{P[y=1/x=2]} = \frac{P[x=2,y=1]}{P[x=2]} = \frac{7/72}{30/72} = \frac{7/30}{30/72}$$

$$P[y=3/x=2] = \frac{P[x=2,y=1]}{P[x=2]} = \frac{10/72}{30/72} = \frac{1/3}{30}$$

$$P[y=3/x=2] = \frac{P[x=2,y=3]}{P[x=2]} = \frac{13/72}{30/72} = \frac{13}{30}$$

Probability dis	tribution of (x+y)
(x+y)	Р
1 P(0,1)	3 72
P(0,2)+P(1,1)	$\frac{6}{.72} + \frac{5}{.72} = \frac{11}{.72}$
3 P(0,3) + P(1,2)+P(2,1)	$\frac{9}{72} + \frac{8}{72} + \frac{7}{72} = \frac{24}{72}$
P(1,3) + P(2,2)	$\frac{11}{72} + \frac{10}{72} = \frac{21}{72}$
5 P(2,3)	13 72
Total	1

