

Coimbatore - 641 107

TOPIC : 1.5 – Discrete and Continuous Random Variables

Random Variable

A random variable is a rule that assigns a numerical values to each possible outcome of an experiment.

A real-valued function defined on the outcome of a probability experiment is called a random variable.

1. Discrete Random Variable

2. Continuous Random Variable

Discrete Random Variable

A Discrete random variable is a random variable whose possible values constitute finite set of values or countably infinite set of values.

Propability Mass Function (PMF)

Let X be a one dimensional discrete random variable which takes the values x_1, x_2, \dots, x_n . To each possible outcome x_i , we can associate a number p_i , i) $P[X = x_i] = p_i$, called

the probability of x;

The numbers P_i satisfies the following conditions (i) $P(x_i) \ge 0 \quad \forall i$ (ii) $\sum_{i=1}^{\infty} P(x_i) = 1$.

The Function p(x)- satisfying the above two conditions is called the <u>Probability Mass</u> Function

Cumulative distribution (or) Distribution fundion of X

The cumulative distribution function F(x) of a discrete random variable x with probability distribution P(x) is given by

$$F(\pi) = P(X \leq \pi) = \sum_{\substack{t \leq \pi \\ t \leq \pi}} P(t)$$

$$\pi = -\infty, \dots -1, 0, 1, \dots \infty$$

(m)

Properties of distribution function
(i)
$$F(-\infty) = P(x \le -\infty) = 0$$

(ii) $F(\infty) = P(x \le \infty) = 1$

(iii)
$$F(x_1) \leq F(x_1)$$
 if $x_1 \leq x_1$
(iv) $P(x > x) = 1 - P(x \leq x)$
(v) $P(x \leq x) = 1 - P(x > x)$
Expected value of a Discrete random variable x_1 .
Lid x be a discrete random variable
assuming values x_1, x_2, \dots, x_n with corresponding
probabilities P_1, P_2, \dots, P_n . Then
 $E[x] = \sum_{i=1}^{n} x_i p(x_i)$
is called the Expected value of x (or) Mean of x
The Variance of a Discrete random variable x
It is defined by $Var(x) = E[x^*] - [E(x)]^2$
(1) Find the expected value of the discrete
random variable x with the put $p(x) = \begin{cases} y_3 & x = 0 \\ y_3 & x = 2 \end{cases}$
 $= (0) (y_3) + (2) (y_3)$

3	Α	random	voriable	х	has	the	fo Noving
pro	bab	ility funct	ion				

IT.T	0	1	2	3	4	5	6	٦	8
эс р(x)	-	70	50	70	qa	110	130	154	170
p(x)	CV.	207				W2			

ii) Determine the value of "a"

(1) Find
$$P(x<3)$$
, $P(x\geq3)$, $P(o$

(in) Find the distribution function of X.

(i) WKT $\sum p(x) = 1$ $\Rightarrow a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a = 1$ $\Rightarrow 81a = 1$ $\Rightarrow a = \frac{1}{81}$ (ii) P(x < 3) = P(x : 0) + P(x = 1) + P(x = 2) $= a + 3a + 5a = 9a = \frac{9}{81}$ $P(x \ge 3) = 1 - P(x < 3)$ $= 1 - \frac{9}{81} = \frac{72}{81}$ P(0 < x < 5) = P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4) $= 3a + 5a + 7a + 9a = 24a = \frac{24}{81}$

(111)	To	Sind	Vice	distribution	fundion	of	x	
					•			

3	x = x	$F(x) = P(x \le x)$
	0	$F(0) = P(x \le 0) = \frac{1}{81}$
	1	$F(i) = P(x \le 1) = 40 = \frac{4}{81}$
	2	$F(2) = P(x \le 2) = qn = \frac{q}{81}$
	3	$F(3) = P(x \le 3) = 160 = \frac{16}{81}$
	4	$F(A) = P(x \le A) = 25a = \frac{25}{81}$
	5	$F(5) = P(x \le 5) = \frac{36}{81}$
	6	$F(6) = P(x \le 6) = \frac{49}{81}$
-	Г	$F(7) = P(x \leq 7) = 64a = \frac{64}{81}$
	8	$F(8) = P(x \le 8) = 810 = 1$

Coimbatore - 641 107

(i) P[1.5< x < 4.5]/x > 2]

$$\frac{P(x) \circ x}{P(x) \circ x} = P[x > 2]$$

$$\frac{x \circ 1}{P(x) \circ x} = \frac{2}{2x} + \frac{3x}{2x} + \frac{5}{2x} + \frac{5}{7x^{4}+x}$$
Find (i) the value of k (ii) P[1.5< x < 4.5/x>2]
(ii) the smallest value of n for which P[x < n] > \frac{1}{2}
(i) WKT $\sum P(x) = 1$
 $\Rightarrow x + 2x + 2x + 3x + x^{2} + 2x^{2} + 7x^{2} + k = 1$
 $\Rightarrow x + 2x + 2x + 3x + x^{2} + 2x^{2} + 7x^{2} + k = 1$
 $\Rightarrow x = -\frac{9 \pm \sqrt{8x + 36}(81 + 40)}{20} = -\frac{9 \pm \sqrt{121}}{20}$
 $= -\frac{9 \pm \sqrt{8x + 36}(81 + 40)}{20} = \frac{-9 \pm \sqrt{121}}{20}$
 $= -\frac{9 \pm 11}{20}, -\frac{9 - 11}{80} = \frac{1}{10}, -1$
 $\left[\frac{1}{10} \right]$
(ii) P[1.5< x < 4.5]/x > 2]
 $= P\left[(1.5 < x < 4.5) \cap (x > 2) \right]$
 $P[x > 2]$
 $= P\left[2 < x < 4.5 \right] = P[x = 3] + P[x = 4]$
 $= 2k + 3k = \frac{5}{10} = \frac{1}{2}$

$$P[x>2] = 1 - P[x \le 2]$$

= 1 - $\{x + 2k\} = 1 - 3k = 1 - \frac{3}{10} = \frac{7}{10}$
Sub. in (1)
$$P[1.5 < x < 4.5 / x > 2] = \frac{5/10}{7/10} = \frac{5}{7}$$

SNSCE/ S&H/ UNIT 1/ P&S/1.5 – Discrete and Continuous Random Variables

(iii)		,
	X = X	$F(x) = P(x \le x)$
	0	$F(0) = P(x \le 0) = 0$
1	1	F(1) = P(x ≤ 1) = K = 10
	2	$F(z) = P(x \le z) = 3\kappa = \frac{3}{10}$
1	3	$F(3) = P(x \le 3) = 5k = \frac{1}{2}$
· · · · · · · · · · · · · · · · · · ·	4	$F(4) = P(x \le 4) = 8k = \frac{4}{5}$
	6	$F(5) = P(x \le 5) = 8k + k^{2} = \frac{8}{10} + \frac{1}{100} = \frac{81}{100}$
	6	$F(6) = P(x \le 6) = 8k + 3k^2 = \frac{8}{10} + \frac{3}{100} = \frac{83}{100}$
	Г Т	F(r) = P(r ≤ r) = 1
	u small	est value of n for which
	Р	$x \leq n > \frac{1}{2}$ is $n = 4$
		I

9 Given of X cor (iv) Van	npute	(i) E[ng Prol X] (ii)	babilil) E[X	ÿ distri ⁺] (iii)	bution) E [2×	(±3]
x	- 3	- 2	- 1	0	1	2	3
p(x)		0.1	0.3	0	0.3	0.15	0.1
	2	∑ x p((-3) (0 + (1) (0.25 ∑ x ² p(x)	.05) + (0.3) + ;	-2) (0· 2 (0·1	5) + (-) 5) + 3))(0·3) (0·1)	1
(iii) E (iv) Va	= 2 [ax±3]	+ (1) (0.3 . 95] = 2 = 2 = 4 = 6 = 2.9	5 - (a 5 - 0.0	(0.15 ± 3 ± 3 [E(x)] (0.15)	;) + ("	0·3) 1) (0·1)
von (2)	(13)	= 4 V					

Continuous Random Variable A random variable X which takes all possible values in a given interval is called a continuous Random Variable. Probability Density Function For a continuous random variable x, a publity density function is a function such (i) $f(x) \ge 0$ (ii) $\int_{0}^{\infty} f(x) dx = 1$ (iii) $P(a \le x \le b) = \int_{a}^{b} f(x) dx$ cumulative Distribution Function If f(x) is a pdf of a continuous random variable ×, then the function $F(x) = P(x \le x) = \int_{-\infty}^{x} F(x) dx , -\infty < x < \infty$ is called the cumulative distribution function of the random variable X. Formula (i) $f(x) = \frac{d}{dx} [F(x)]$ (ii) Mean = $E[x] = \int_{-\infty}^{\infty} x f(x) dx$ (iii) $E[x^{*}] = \int_{-\infty}^{\infty} x^{*}f(x) dx$

(iv) $P[a \le x \le b] = F(b) - F(a)$

(v)
$$P[a \le x \le b] = P[a \le x < b] = P[a < x \le b]$$

$$= P[a < x < b], x being a continuous random variable
(i) If The pdf of a random variable x is
 $f(x) = \frac{x}{2}$ in $0 \le x \le 2$, find $P[x > 1 \cdot 5 / x > 1]$.
 $P[x > 1 \cdot 5 / x > 1] = P[(x > 1 \cdot 5) \cap (x > 1)]$
 $= \frac{P[x > 1 \cdot 5]}{P[x > 1]} \longrightarrow 0$
 $P[x > 1 \cdot 5] = \int_{1 \cdot 5}^{2} f(x) dx = \int_{1 \cdot 5}^{2} \frac{x}{2} dx$
 $= \frac{1}{2} \left[\frac{x^{2}}{2} \right]_{1 \cdot 5}^{2} = \frac{1}{4} \left[4 - 2 \cdot 25 \right]$
 $P[x > 1] = \int_{1 \cdot 5}^{2} f(x) dx = \int_{1 \cdot 5}^{2} \frac{x}{2} dx$
 $= \frac{1}{4} \left[1 \cdot 75 \right] = 0 \cdot 4375$
 $P[x > 1] = \int_{1 \cdot 5}^{2} f(x) dx = \int_{1 \cdot 5}^{2} \frac{x}{2} dx = \frac{1}{2} \left(\frac{x^{2}}{2} \right)_{1}^{2}$
 $= \frac{1}{4} \left[4 - 1 \right] = 0 \cdot 75$
Sub in (D),
 $P[x > 1 \cdot 5 / x > 1] = \frac{0 \cdot 4375}{0 \cdot 75} = 0 \cdot 5833$$$

2) show that the function
$$f(1) = e^{-x}, x \ge 0$$
 is a
probability density function of a random variable of x

$$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{\infty} e^{-x} dx = \left[\frac{e^{-x}}{-1}\right]_{0}^{\infty}$$

$$= -\left[0-1\right] = 1$$

$$\therefore \text{ Given } f(x) \text{ is a pdf}.$$
3) If $f(x) = \begin{cases} ke^{-x}, x > 0 \\ 0 & \text{elsewhave} \end{cases}$ is the pdf of a
random variable x, then find the value of k.
WKT $\int_{0}^{\infty} f(x) dx = 1$

$$\Rightarrow \int_{0}^{\infty} ke^{-x} dx = 1 \Rightarrow k\left[\frac{e^{-x}}{-1}\right]_{0}^{\infty} = 1$$

$$\Rightarrow -k\left[0-1\right] = 1 \Rightarrow \left[\frac{k-1}{2}\right]$$
4) Assume that x is a continuous variable
with pdf $f(x) = \begin{cases} \frac{3}{4}(2x-x^{2}), & 0 \le x \le 2 \\ 0, & \text{elsewhere} \end{cases}$

$$P[x > 1] = \int_{1}^{2} f(x) dx = \int_{1}^{2} \frac{3}{4}\left[(4-\frac{8}{3})-(1-\frac{1}{3})\right]$$

$$= \frac{3}{4} \left[\frac{4}{3} - \frac{2}{3} \right] = \frac{3}{4} \left[\frac{2}{3} \right] = \frac{1}{2}$$

(5) The pdf of a random variable X is given by $f(x) = \begin{cases} x , 0 < x < 1 \\ k(2-x), 1 \le x \le 2 \end{cases}$. Find 0, otherwise(i) the value of K (ii) P [0.2 < x < 1.2] (iii) P[0.5 < x < 1.5 / x > 1] (iv) the distribution function of X (i) WKT $\int_{-\infty}^{\infty} f(x) dx = 1$ $= \frac{1}{2} + K \left[2 - \frac{3}{2} \right] = 1$ \Rightarrow $K\left[\frac{1}{2}\right] = \frac{1}{2} \Rightarrow K = 1$ (ii) $P\left[0.2 < x < 1.2\right] = \int_{0.2}^{1.2} f(x) dx$ = $\int_{0.2}^{1} x dx + \int_{1}^{1.2} (2-x) dx$ $\stackrel{*}{=} \left(\frac{\pi^{1}}{2}\right)_{0,2}^{1} + \left[2\pi - \frac{\pi^{1}}{2}\right]_{1}^{1/2}$ $=\frac{1}{2}\left[1-0.04\right] + \left[\left(2.4-0.72\right)-\left(2-\frac{1}{2}\right)\right]$ $=\frac{1}{2}[0.96] + [0.18] = 0.66$ (iii) P[0.5 < x < 1.5 / X≥1] $= \frac{P\left[1 < x < 1.5\right]}{P[x \ge 1]} \rightarrow 0$ $P[1 < x < 1.5] = \int_{-\infty}^{1.5} (2-x) dx = [2x - \frac{x}{2}],$ $= \int \left(3 - \frac{2 \cdot 25}{2}\right) - \left(2 - \frac{1}{2}\right)$ = [3 - 1 · 125 - 1 · 5] = 0 · 375 $P[x \ge 1] = \int_{1}^{1} (2-x) dx = \left[21 - \frac{x}{2}\right]_{1}^{2} = \left[\left(4 - 2\right) - \left(2 - \frac{1}{2}\right)\right]_{1}^{2}$

Sub. in 1 $P\left[0.5 < x < 1.5 / x \ge 1\right] = \frac{0.375}{0.5} = 0.75$ (iv) To find CDF $\frac{\text{When } 0 < x < 1}{F(x) = \int_{0}^{x} f(x) \, dx} = \int_{0}^{x} x \, dx = \left(\frac{x^{L}}{2}\right)_{0}^{x}$ = <u>x</u>² $\frac{when \quad 1 < x < 2}{F(x)} = \int_{1}^{x} f(x) dx = \int_{0}^{1} x dx + \int_{1}^{x} (2-x) dx$ $= \left(\frac{\chi^2}{2}\right)_0^1 + \left[2\chi - \frac{\chi^2}{2}\right]_1^{\chi}$ $= \frac{1}{2} + \left[\left(2 \chi - \frac{\chi^2}{2} \right) - \left(2 - \frac{1}{2} \right) \right]$ $=\frac{1}{2}-\frac{3}{2}+2x-\frac{x^{2}}{2}$ $= 2x - \frac{x^2}{2} - 1$ when x>2 c¹ c² c⁷

$$F(x) = \int_{-\infty}^{x} f(x) dx = \int_{0}^{x} dx + \int_{1}^{2} (2-x) dx + \int_{2}^{1} 0 dx$$
$$= \left(\frac{x}{2}\right)_{0}^{1} + \left(2x - \frac{x}{2}\right)_{1}^{2} = \frac{1}{2} + \left(4 - \frac{1}{2}2\right) - \left(2 - \frac{1}{2}\right)$$

$$= \frac{1}{2} + 2 - \frac{3}{2} = 1$$

$$\therefore F(x) = \begin{cases} 0, x < 0 \\ x_{\perp}^{t}, 0 < x < 1 \\ 2x - \frac{x^{t}}{2} - 1, 1 < x < 2 \\ 1, x > 2 \end{cases}$$

$$\bigoplus \text{ If } \text{ fur density function of a continuous } y.y$$

$$x \text{ is given by } f(x) = \begin{cases} ax, 0 \le x \le 1 \\ a, 1 \le x \le 2 \\ a, 0 \le x \le 1 \end{cases}$$

$$find (i) \text{ the value of } a^{t} \\ (i) \text{ of f } x \end{cases} \xrightarrow{fax} dx + \int_{1}^{2} da + \int_{2}^{3} (3a - ax) da = 1 \end{cases}$$

$$a \left(\frac{x^{t}}{2}\right)_{0}^{t} + a \left(x\right)_{1}^{t} + \left[3ax - ax^{t}\right]_{2}^{3} = 1$$

$$\Rightarrow a \left(\frac{1}{2}\right) + a + \left[\left(qa - \frac{qa}{2}\right) - \left(6a - 2a\right)\right] = 1$$

$$\Rightarrow \frac{3a}{2} + \left[5a - \frac{qa}{2}\right] = 1 \Rightarrow \frac{3a}{2} + \frac{a}{2} = 1$$

$$\Rightarrow 2a = 1 \Rightarrow \left[a = \frac{1}{2}\right]$$

$$(ii) \frac{10 \text{ find } \text{ CDF}}{x} \qquad (ii) \frac{10 \text{ find } \text{ CDF}}{x} \qquad (ii) \frac{x}{2} = \frac{x^{t}}{2}$$

$$\frac{\text{whun } | \leq x \leq 2}{F(x) = \int_{-\infty}^{1} \int_{x}^{x} f(x) dx} = \int_{0}^{1} \frac{x}{2} dx + \int_{1}^{x} \frac{1}{2} dx$$

$$= \frac{1}{2} \left(\frac{x^{2}}{2}\right)_{0}^{1} + \frac{1}{2} \left(x\right)_{1}^{x}$$

$$= \frac{1}{4} + \frac{1}{2} \left(x-1\right) = \frac{1}{2} \left(x-\frac{1}{2}\right)$$

$$\frac{\text{whun } 2 \leq x \leq 3}{F(x) = \int_{-\infty}^{\pi} f(x) dx} = \int_{0}^{1} \frac{x}{2} dx + \int_{1}^{2} \frac{1}{2} dx + \int_{2}^{\pi} \left(\frac{3}{2} - \frac{x}{2}\right) dx}$$

$$= \frac{1}{2} \left(\frac{x^{2}}{2}\right)_{0}^{1} + \frac{1}{2} \left(x\right)_{1}^{2} + \left[\frac{3}{2} x - \frac{x^{2}}{4}\right]_{2}^{2}$$

$$= \frac{1}{4} + \frac{1}{2} + \left[\left(\frac{3}{2} x - \frac{x^{2}}{4}\right) - \left(3 - 1\right)\right]$$

$$= \frac{3x}{2} - \frac{x^{2}}{4} - \frac{5}{4}$$

$$F(x) = \begin{cases} 0^{\frac{1}{2}}, & x < 0 \\ \frac{x^{1}}{4}, & 0 \le x \le 1 \\ \frac{1}{2}(x - \frac{y_{1}}{2}), & 1 \le x \le 2 \\ \frac{3x}{2} - \frac{x^{1}}{4} - \frac{5}{4}, & 2 \le x \le 3 \\ 1 & 0, & x > 3 \end{cases}$$