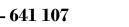


SNS COLLEGE OF ENGINEERING


Coimbatore – 641 107

TOPIC : 1.3 – Baye's theorem & Problems

Baye's theorem:
If Bi, B2... Bn be, a clet of
enhaustive and mutually exclusive events
associated with random experiment and A
B another event associate with Bi
Then
$$P(Bi|A) = \frac{P(Bi) \cdot P(A|Bi)}{\sum_{i=1}^{2} P(Bi) \cdot P(A|Bi)}$$

 $\frac{2}{P(Bi) \cdot P(A|Bi)} = \frac{P(Bi|A)}{P(Bi|A)}$
 $P(Bi|A) = \frac{P(Bi|A)}{P(A)} = \frac{P(Bi|A)}{P(Bi|A)}$
 $P(Bi|A) = \frac{P(Bi|A)}{P(A)} = P(Bi|A)$
 $P(Bi|A) = \frac{P(Bi|A)}{P(A|Bi)} = P(Bi|A)$
 $P(Bi|A) = \frac{P(A|Bi)}{P(Bi)} = P(Bi|A)$
 $P(Bi|A) = \frac{P(A|Bi)}{P(A|Bi)} = P(Bi|A)$
 $P(Bi|A) = \frac{P(A|Bi)}{P(Bi)} = P(Bi|A)$
 $P(Bi|A) = \frac{P(A|Bi)}{P(A|Bi)} = P(Bi|A)$
 $P(Bi|A) = \frac{P(A|Bi)}{P(Bi)} = P(Bi|A)$
 $P(Bi|A) = \frac{P(A|Bi)}{P(A|Bi)} = P(Bi|A)$
 $P(Bi|A) = \frac{P(A|Bi)}{P(Bi)} = P(A)$
 $P(Bi|A) = \frac{P(Bi|A)}{P(A|Bi)} = P(A)$
 $P(Bi|A) = \frac{P(Bi|A)}{P(A|A)} = P(A)$
 $P(Bi|A) = \frac{P(Bi|A)}{P(A|A)} = P(A)$

SNS COLLEGE OF ENGINEERING Coimbatore - 641 107

an usur livosen at random. What is the
prob that white ball is drawn from the
ist win?
Self
her Bi be the event that ist win choosen
at B₂ be the event that ist win choosen
at B₃ be the event that ist win choosen.
Let A be the ovent that a is ball b
drawn.

$$p(B_1) = p(B_2) = p(B_3) = \frac{1}{3}$$

 $p(A|B_1) = \frac{2}{5}$; $p(A|B_2) = \frac{3}{5}$; $p(A|B_3) = \frac{4}{5}$
 \therefore By baye's thin probab of WB being
drawn out of the ist win is given by
 $P(B_2|A) = \frac{p(B_1)}{2} p(A|B_2)$
 $= p(B_1)P(A|B_1)$
 $= p(B_1)P(A|B_1)$
 $= \frac{1}{3} \cdot \frac{2}{5}$
 $= \frac{2}{3} \cdot \frac{2}{5}$

SNS COLLEGE OF ENGINEERING Coimbatore - 641 107

0110 ×====/ 9 9. 2) A bag contains 5 balls 2 it is not know how many of them are white. 2 Balls are drawn at random from the bag and they are noted to be white. What is the chance that all the balls in the bag are white. a first theory. If you a Sola State 2 w balls have drawn out, The Bag must have contain 2, 3, 4 pr) 5 as balls. Let B, event of bag containing 2 w Balls ; 3 W Ball Ba (4) 4. (4) 1 W balls B3 // 5 W balls St a d 84 Bet A be the event of drawing white balls. A. A. Marker

ofince no. of W balls in the bag is not known, Bi's are corvally likely t

 $P(B_1) = P(B_2) = P(B_3) = P(B_4) = \frac{1}{4}$

SNS COLLEGE OF ENGINEERING

Coimbatore - 641 107

$$B_{1} \rightarrow 2W + P(B_{1})$$

$$B_{2} = 3W + P(B_{2})$$

$$B_{3} = AW = P(B_{2})$$

$$B_{4} = 5W = P(B_{4})$$

$$P(B_{4}/A) = \frac{P(B_{4}) \cdot P(A|B_{4})}{\frac{A}{2}}$$

$$P(B_{1}) = \frac{P(B_{1}) \cdot P(A|B_{1})}{\frac{A}{2}}$$

$$P(A|B_{2}) = \frac{3C_{2}}{5C_{2}} = \frac{3\times2}{1\times2} = \frac{4}{10} = \frac{3}{10}$$

$$P(A|B_{2}) = \frac{3C_{2}}{5C_{2}} = \frac{3\times2}{1\times2\times3} = \frac{4}{10}$$

$$P(A|B_{3}) = \frac{4C_{2}}{5C_{3}} = \frac{4\times3YZ}{1\times2\times3} = \frac{24}{10}$$

$$P(A|B_{3}) = \frac{5C_{2}}{5C_{3}} = 1$$

$$= \frac{1}{4} + 1$$

$$= \frac{1}{4} + \frac{1}{10}$$

$$= \frac{1}{20} = \frac{10}{20} = 1$$