

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

TOPIC: 4.7 MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES

D) Find the dimensions of the rectangular box,
open at the top, of maximum capacity whose
surface area is 432 squar meter.
Let
$$\varkappa, \vartheta, \varkappa$$
 be the rectangular box dimension
Volume $f(\varkappa, \vartheta, \varkappa) = \varkappa \vartheta \varkappa$
surface area $g(\varkappa, \vartheta, \varkappa) = \varkappa \vartheta \varkappa + 2\vartheta \varkappa + 2\varkappa \varkappa = 432$
 $g(\varkappa, \vartheta, \varkappa) = \varkappa \vartheta + 2\vartheta \varkappa + 2\varkappa \varkappa = 432$
Hence $F(\varkappa, \vartheta, \varkappa) = f(\varkappa, \vartheta, \varkappa) + \lambda g(\varkappa, \vartheta, \varkappa)$
 $= \varkappa \vartheta \varkappa + \lambda (\varkappa \vartheta + 2\vartheta \varkappa + 2\varkappa \varkappa - 432) \longrightarrow O$
Diff. (D) partially w.r.t 'x', 'y' and 'z'

SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

$$\frac{\partial F}{\partial x} = yz + \lambda (y + 2z) = 0$$

$$\lambda (y + 2z) = -yz$$

$$\lambda = -\frac{yz}{y + 2z} \longrightarrow (2)$$

$$\frac{\partial F}{\partial y} = xz + \lambda (x + 2z) = 0$$

$$\lambda (x + 2z) = -xz$$

$$\lambda = -\frac{xz}{x + 2z} \longrightarrow (3)$$

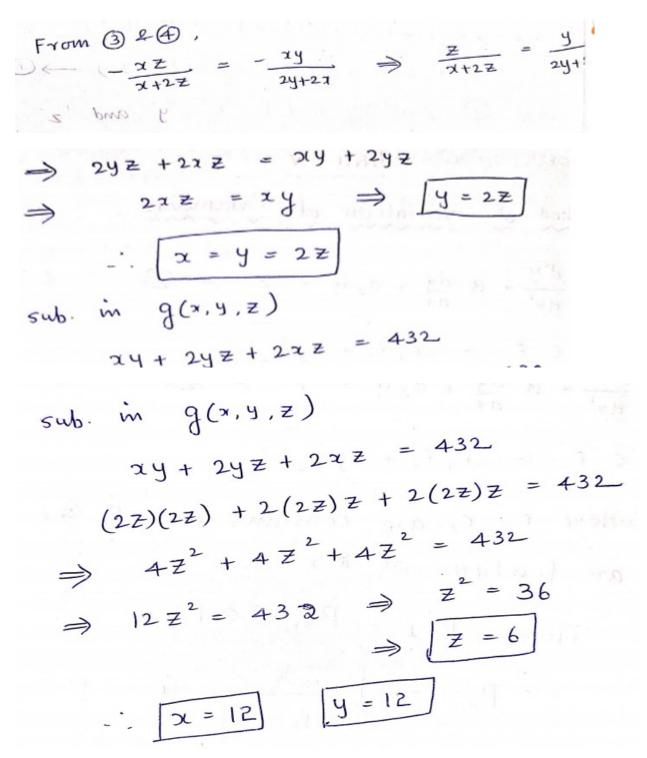
$$\frac{\partial F}{\partial z} = xy + \lambda (2y + 2x) = 0$$
$$\lambda (2y + 2x) = -xy$$
$$\lambda = -xy$$
$$\lambda = -\frac{xy}{2y + 2x} \longrightarrow (4)$$

From 2 23,

$$\frac{-YZ}{Y+2Z} = \frac{-\chi Z}{\chi+2Z} \implies \frac{Y}{Y+2Z} = \frac{\chi}{\chi+2Z}$$

$$\Rightarrow \chi y + \partial y z = \chi y + 2\chi z$$

$$\Rightarrow 2y z = 2\chi z \Rightarrow \chi = y$$



SNS COLLEGE OF ENGINEERING Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

