

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

TOPIC: 4.2 - DIFFERENTIATION OF IMPLICIT FUNCTIONS,

JACOBIAN AND PROPERTIES

Jacobia	~~
If	u, u, u, un are functions of n
miables	x, x2,, x, , then the Jacobian of
e tran	sformation from x, x, x, x, to
1, U ₂ ,	. un is defined by
	$\frac{\partial u_1}{\partial x_1}$, $\frac{\partial u_1}{\partial x_2}$, $\frac{\partial u_1}{\partial x_n}$
	$\frac{\partial U_2}{\partial x_1}$ $\frac{\partial U_2}{\partial x_2}$ $\frac{\partial U_2}{\partial x_n}$
	·· · · · - · ·
1	$\frac{\partial u_n}{\partial x_1} \frac{\partial u_n}{\partial x_2} \frac{\partial u_n}{\partial x_n}$

and is denoted by the symbol $\frac{\partial(u_1, u_2, \dots, u_n)}{\partial(x_1, x_2, \dots, x_n)}$ or $J_{(u_1, u_2, \dots, u_n)}$

In particular
$$\frac{\partial(u_1, u_2)}{\partial(x_1, x_2)} = \begin{cases} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} \end{cases}$$

 $\frac{\partial(u_1, u_2, u_3)}{\partial(x_1, x_2, x_3)} = \begin{cases} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \\ \frac{\partial u_3}{\partial x_1} & \frac{\partial u_3}{\partial x_2} & \frac{\partial u_3}{\partial x_3} \end{cases}$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Functional dependence
If u, v, w are functionally dependent
functions of the independent variables
$$x, y, z$$

then $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 0$
1) If $x = r \cos u$, $y = r \sin u$, find (i) $\frac{\partial(x, y)}{\partial(r, u)}$
(ii) $\frac{\partial(r, u)}{\partial(x, y)}$
Given $x = r \cos u$ $y = r \sin u$
 $\frac{\partial x}{\partial r} = \cos u$ $\frac{\partial y}{\partial r} = \sin u$
 $\frac{\partial x}{\partial u} = -r \sin u$ $\frac{\partial y}{\partial u} = r \cos u$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

(i)
$$\frac{\partial(x,y)}{\partial(x,w)} = \begin{vmatrix} \frac{\partial x}{\partial x} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial w} \end{vmatrix}$$

$$= \begin{vmatrix} \cos \omega & -x\sin \omega \\ \sin \omega & x\cos \omega \end{vmatrix}$$

$$= x\cos^{2}\omega + x\sin^{2}\omega = x$$

(ii) $\frac{\partial(x,w)}{\partial(x,y)} = \frac{1}{x}$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

6 F x,,x	ind the Ja , 23 if y,	$\begin{array}{l} \text{cobian of} \\ = \frac{\chi_2 \chi_3}{\chi_1} \end{array}, \end{array}$	y_{1}, y_{2}, y_{3} $y_{2} = \frac{\chi_{3}\chi_{1}}{\chi_{2}}$	$y_{3} = \frac{x_{1}x_{2}}{x_{3}}$
		$\frac{\frac{\partial Y_{1}}{\partial x_{1}}}{\frac{\partial U_{2}}{\partial x_{1}}}$ $\frac{\frac{\partial U_{2}}{\partial x_{1}}}{\frac{\partial U_{3}}{\partial x_{1}}}$ $\frac{\chi_{3}}{\chi_{1}}$	<u>JU3</u> JU2 JU2	DY EKG SU2 DU2 DU2 DU2 DU2 DU2 DU2 DU2 D
= -	$\frac{\chi_{1}}{\chi_{3}}$ $\frac{\chi_{2}\chi_{3}}{\chi_{1}^{2}} \left[\frac{\chi_{1}^{2}\chi_{2}\chi_{3}}{\chi_{2}^{2}\chi_{3}} + \frac{\chi_{1}}{\chi_{1}} \right] \left[\frac{\chi_{1}\chi_{2}\chi_{3}}{\chi_{2}\chi_{3}} + \frac{\chi_{1}}{\chi_{1}} \right] \left[\frac{\chi_{1}\chi_{3}}{\chi_{2}\chi_{3}} + \frac{\chi_{1}}{\chi_{1}} \right]$	$\frac{3}{2} - \frac{2l_1^2}{2}$	x3 x3	$\frac{31,31233}{3223} - \frac{31,3}{323}$