CS 445- Algorithms

Huffman codes
A—

Credit: Artur Czumaj

A EEEE———
Another example of greedy algorithm:

Compression

* Take a text (or an object) ‘Lossless compression

* Encode it so that

— Less space is used, or energy to transmit it.

— No information is lost — we can reconstruct the
original text

— Often: be able to quickly reconstruct originalttex

Huffman Coding

¢ Coding: each characte* unique binary string
« Example (not so good for compression):
ASCII codes-each character uses 8 bits
— Doesn't give good compression rate
« Different characters will havéifferent lengths

— More frequent (common) characters will have
shorter coding

« letter “e” is most frequent ~ 12%
— rare characters will have longer coding
« letter “z” is very rare

Huffman coding

¢ Easy to assign bit-strings to letters
« How to ensure (unique) reconstruction?

A->01 How to decode 010101
B > 0101 AB or BA or perhaps AAA?

Definition: Prefix codes:
no codeword is a prefix of another codeword

Huffman coding / prefix codes

Prefix codes:

no codeword is a prefix of another codeword

« Easy encoding:
— Construcs the stringsof bits by
concatenating codewords of chars

char | code | - Easy decoding:
A 1 — givens, we find the first few bits (prefix) that
forms a char —there can be only one such prefix.
B |01 -
— Remove this prefix frors and repeat.
¢ _|oot DADABCA
D_|00o1 0001 10001 1 01 001 1

Huffman coding

Codewords are presented by a binary tree
Eachleafstores, and represents a character

Node with two children — left ~ 0; right ~ 1

codeword= path from the root to the leaf storing given
characters

The code represented by the lefs of the
tree is a prefix codévhy?)

1

char | code
A |1
B |01
¢ 001
D |0001

Huffman coding

¢ Codewords are presented by binary trees

« We can always aim at getting full binary trees
— (no node with a single child)

char | code
A |1
B |01
Cc |001
D 000

Huffman codes and full trees

« Given atext string, find a prefix code for the charactersof
giving smallest encoding fof
— Frequent characters should have short codewords
— Rare characters should have long codewords
* Example
— X=ABRACADABRA (‘R” is rate,"A” is frequent)
— T1encodesK into 29 bits

— T2 encodesX into 24 bits

Huffman codes and full trees

« Given afileX, find a prefix code for the characters)ogjiving
smallest encoding fox.

— Frequent characters should have short codewords
— Rare characters should have long codewords

¢ More practical scenario:
— Given frequencies of possible characters in adagg, find
a prefix code that gives smallest encoding of iagtirom
the language

Huffman codes-cont

® - alphabet.X —input file to encode.
f(x) = how many times appears<.
Let w(x) denote the binary code of a chaf/>'.

The size of the encoded file is therefor
250 T W(x)

Thedepth of a leafw(x) of the encoding tree is the
distance from the root to the leafw(x)|

Given a coding tre&, the cost of of the tree is
cost(T) =2, 5 f(x) depthtw(x))

Problem: Find a treel of minimum cost.

Greedy algorithm for generating opt tree

Start: Each character is a tree by
itself (so we have a forest of
|2| trees. Store them in a heap

Q.
Repeat until one tree is left: fori=lto n-1{
Find two nodesi,vwith the lowest | ALLOCATE-NODE(w)
frequencies. leffw]= u=EXT_MIN(Q)
Create a new internal node, rightfw]= v =EXT-MIN(Q)

with u,v nodes as its children flw] =f{u] + f[V]
(either node can be either =~ INSERTQ, w)
child) and the sum of their
frequencies as the new return EXTRACT-MIN(Q)
frequency

-

Credit for next several slides:

Nelson Padua-Perez and William Pugh

Huffman Tree Construction 1

The number indicate the frequency

*The two least-frequent nodes are AH
*The algorithm replaces them with one new node a.
«lts frequency is the sum of frequencies of these two nodes

Huffman Tree Construction 2

N/, S B Q
O: 00 0
The frequency of a is the length of the
encoded binary file taken by A and H

*The two least-frequent nodes are AH
*The algorithm replaces them with one new node a.
«lts frequency is the sum of frequencies of these two nodes

Huffman Tree Construction 3

A H

\ / C
Q@ ©
N/ E I
: o O
The two least frequent nodes were a
and C, and they were replaced by a

node b whose frequency is the sum of
their frequencies — 10.

Huffman Tree Construction 4

A H
00

006 00
ae\f _/

: ®
Cc

Huffman Tree Construction 5

E = o1

@0 . | -
ee e A = 111
TN o 1M/ ©H = 110
b@‘\/e

Huffman codes

* Good implementations:
— O(nlog n) time, wheren= x|

* Using priority queues (aka binary heaps):
— Initially, store all characters in a priority quewrt
the frequencies (as the keys)
— Removal of two nodes with lowest freqElBTEMIN
— Inserting of a new nodesiderT
— O(log n) operations BLETEMIN / INSERT =
O(nlogn)time

Huffman codes

¢ Correctness:

Huffman codes-correctness

Assume by induction that the algorithm works caiisefor all
alphabets with less thancharacters.

« Optimum tree (recall: not unique):

— Is a full binary tree (all internal nodes havehldren)

— There is always an optimal tree in which two nodéh
minimum frequencies are siblings

« (if this is not the case in an optimal tree, wa aéways
replace one with the sibling of the other, gettimgequally-
cheap tree)

— If we remove any two sibling leaves (but leavertipeirent)
then we're left with an optimum tree for the sanphabet but
with a new char that replaces the two leaves —dfebhis char
is freq of that node

« This is exactly what Huffman algorithm produces

