

Another example of greedy algorithm: Huffman codes

Credit: Artur Czumaj

Huffman Coding

- Coding: each character \rightarrow unique binary string
- Example (not so good for compression):

ASCII codes-each character uses 8 bits

- Doesn't give good compression rate
- Different characters will have different lengths
- More frequent (common) characters will have shorter coding
- letter "e" is most frequent $\sim 12 \%$
- rare characters will have longer coding
- letter " z " is very rare

Compression

- Take a text (or an object)

Lossless compression

- Encode it so that
- Less space is used, or energy to transmit it.
- No information is lost - we can reconstruct the original text
- Often: be able to quickly reconstruct original text

Huffman coding

- Easy to assign bit-strings to letters
- How to ensure (unique) reconstruction?

$$
\begin{array}{ll}
A \rightarrow 01 & \text { How to decode } 010101 \\
B \rightarrow 0101 & \text { AB or BA or perhaps AAA? }
\end{array}
$$

Definition: Prefix codes:
no codeword is a prefix of another codeword

Huffman coding / prefix codes		
Prefix codes: no codeword is a prefix of another codeword		
		- Easy encoding: - Construcs the strings s of bits by concatenating codewords of chars - Easy decoding: - given s, we find the first few bits (prefix) that forms a char - there can be only one such prefix. - Remove this prefix from s and repeat. $\begin{aligned} & \text { D A D A B C A } \\ & 0001100011010011 \end{aligned}$
char	code	
A	1	
B	01	
C	001	
D	0001	

Huffman coding

- Codewords are presented by a binary tree
- Each leaf stores, and represents a character
- Node with two children - left ~ 0; right ~ 1
- codeword = path from the root to the leaf storing given characters

> The code represented by the lefs of the tree is a prefix code (why?)

char	code
A	1
B	01
C	001
D	0001

Huffman coding

- Codewords are presented by binary trees
- We can always aim at getting full binary trees - (no node with a single child)

char	code
A	1
B	01
C	001
D	000

Huffman codes and full trees

- Given a text string X, find a prefix code for the characters of X giving smallest encoding for X
- Frequent characters should have short codewords
- Rare characters should have long codewords
- Example
- $X=$ ABRACADABRA (" R " is rate, " A " is frequent)
- $T 1$ encodes X into 29 bits
- T2 encodes X into 24 bits

Huffman codes-cont

- Σ^{\prime} - alphabet. X - input file to encode.
- $f(x)=$ how many times x appears X.
- Let $w(x)$ denote the binary code of a char $x \in \Sigma^{\prime}$.
- The size of the encoded file is therefor
$\sum_{x \in \Sigma^{\prime}} f(x) w(x)$
- The depth of a leaf $w(x)$ of the encoding tree is the distance from the root to the leaf $=|w(x)|$
- Given a coding tree T, the cost of of the tree is $\operatorname{cost}(T)=\sum_{x \in \Sigma^{\prime}} f(x) \operatorname{depth}(w(x))$

Problem: Find a tree T of minimum cost.

Greedy algorithm for generating opt tree

Start: Each character is a tree by itself (so we have a forest of $\left|\Sigma^{\prime}\right|$ trees. Store them in a heap Q.

Repeat until one tree is left:
Find two nodes u, v with the lowest frequencies
Create a new internal node, w with u, v nodes as its children (either node can be either child) and the sum of their frequencies as the new frequency

Credit for next several slides:

Nelson Padua-Perez and William Pugh

Huffman Tree Construction 1

The number indicate the frequency

-The two least-frequent nodes are A, H
-The algorithm replaces them with one new node a. - Its frequency is the sum of frequencies of these two nodes

Huffman Tree Construction 2

The frequency of a is the length of the encoded binary file taken by A and H
-The two least-frequent nodes are A, H
-The algorithm replaces them with one new node a. -Its frequency is the sum of frequencies of these two nodes

Huffman Tree Construction 3

The two least frequent nodes were a and C, and they were replaced by a node b whose frequency is the sum of their frequencies - 10 .

Huffman Tree Construction 5

Huffman Tree Construction 4

Huffman codes

- Good implementations:
- $\mathrm{O}(n \log n)$ time, where $n=|\Sigma|$
- Using priority queues (aka binary heaps):
- Initially, store all characters in a priority queue wrt the frequencies (as the keys)
- Removal of two nodes with lowest freqs: DeleteMin
- Inserting of a new node: Insert
$-O(\log n)$ operations DeLETEMIN / InsERT \rightarrow
$O(n \log n)$ time

Huffman codes-correctness

Assume by induction that the algorithm works correctly for all alphabets with less than n characters.

- Optimum tree (recall: not unique):
- Is a full binary tree (all internal nodes have 2 children)
- There is always an optimal tree in which two nodes with
minimum frequencies are siblings
- (if this is not the case in an optimal tree, we can always replace one with the sibling of the other, getting an equallycheap tree)
- If we remove any two sibling leaves (but leave their parent) then we're left with an optimum tree for the same alphabet but with a new char that replaces the two leaves - freq of this char is freq of that node
- This is exactly what Huffman algorithm produces

