
1

Credit: Artur Czumaj

CS 445CS 445-- Algorithms Algorithms

Another example of greedy algorithm:
Huffman codes

Compression

• Take a text (or an object)

• Encode it so that
– Less space is used, or energy to transmit it.

– No information is lost – we can reconstruct the
original text

– Often: be able to quickly reconstruct original text

Lossless compression

Huffman Coding

• Coding: each character � unique binary string
• Example (not so good for compression):

ASCII codes-each character uses 8 bits
– Doesn’t give good compression rate

• Different characters will have different lengthsdifferent lengths
– More frequent (common) characters will have

shorter coding
• letter “e” is most frequent ~ 12%

– rare characters will have longer coding
• letter “z” is very rare

Huffman coding

• Easy to assign bit-strings to letters

• How to ensure (unique) reconstruction?

Definition: Prefix codes:Definition: Prefix codes:
no codeword is a prefix of another codeword

A � 01
B � 0101

How to decode 010101
AB or BA or perhaps AAA?

Huffman coding / prefix codes

Prefix codes:Prefix codes:
no codeword is a prefix of another codeword

00010001DD

001001CC

0101BB

11AA

codecodecharchar

• Easy encoding:

– Construcs the strings s of bits by
concatenating codewords of chars

• Easy decoding:

– given s, we find the first few bits (prefix) that
forms a char – there can be only one such prefix.

– Remove this prefix from sand repeat.

D A D A B C A

0001 1 0001 1 01 001 1

Huffman coding
• Codewords are presented by a binary tree

• Eachleafleafstores, and represents a character

• Node with two children – left ~ 0; right ~ 1

•• codewordcodeword= path from the root to the leaf storing given
characters

DD

CC

BB

AA

charchar

00010001

001001

0101

11

codecode AA

BB

CC

DD

1

0

0

0

1

1

1

The code represented by the lefs of the
tree is a prefix code (why?)

2

Huffman coding

• Codewords are presented by binary trees

• We can always aim at getting full binary trees
– (no node with a single child)

DD

CC

BB

AA

charchar

00010001

001001

0101

11

codecode
AA

BB

CC

DD

1

0

0

0

1

1

1

000000

Huffman codes and full trees
• Given a text string X, find a prefix code for the characters of X

giving smallest encoding for X
– Frequent characters should have short codewords
– Rare characters should have long codewords

• Example
– X = ABRACADABRA (“R” is rate, “A” is frequent)
– T1 encodes X into 29 bits
– T2 encodes X into 24 bits

C

A R

D B A

C D

B R

Huffman codes and full trees

• Given a file X, find a prefix code for the characters of X giving
smallest encoding for X.

– Frequent characters should have short codewords

– Rare characters should have long codewords

• More practical scenario:

– Given frequencies of possible characters in a language, find
a prefix code that gives smallest encoding of a string from
the language

Huffman codes-cont
• Σ’ - alphabet. X – input file to encode.

• f(x) = how many times x appears X.
• Let w(x)denote the binary code of a char x ∈Σ’.
• The size of the encoded file is therefor

∑x ∈Σ’ f(x) w(x)

• The depth of a leaf w(x) of the encoding tree is the
distance from the root to the leaf = |w(x)|

• Given a coding tree T, the cost of of the tree is
cost(T) = ∑x ∈Σ’ f(x) depth(w(x))

Problem: Find a tree T of minimum cost.

Greedy algorithm for generating opt tree

Start: Each character is a tree by
itself (so we have a forest of
|Σ’| trees. Store them in a heap
Q.

Repeat until one tree is left:

Find two nodes u,v with the lowest
frequencies.

Create a new internal node, w
with u,v nodes as its children
(either node can be either
child) and the sum of their
frequencies as the new
frequency

for i=1 to n - 1 {
ALLOCATE-NODE(w)
left[w]= u =EXT_MIN(Q)
right[w]= v =EXT-MIN(Q)
f[w] =f[u] + f[v]
INSERT(Q, w)
}
return EXTRACT-MIN(Q)

Credit for next several slides:

Nelson Padua-Perez and William Pugh

3

Huffman Tree Construction 1
The number indicate the frequency

3 5 8 2 7

A C E H I

•The two least-frequent nodes are A,H
•The algorithm replaces them with one new node a.
•Its frequency is the sum of frequencies of these two nodes

Huffman Tree Construction 2

3

5 8

2

7
5

A

C E

H

I

•The two least-frequent nodes are A,H
•The algorithm replaces them with one new node a.
•Its frequency is the sum of frequencies of these two nodes

a

The frequency of a is the length of the
encoded binary file taken by A and H

Q

Huffman Tree Construction 3

3

5

8

2

7

5

10

A

C

E

H

I

The two least frequent nodes were a
and C, and they were replaced by a
node b whose frequency is the sum of
their frequencies – 10.

b

a

Huffman Tree Construction 4

3

5 8

2

75

10 15

A

C E

H

I

a

b
c

Huffman Tree Construction 5

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

E = 01
I = 00
C = 10
A = 111
H = 110a

b

c

d

Huffman codes

• Good implementations:
– O(n log n) time, where n= |Σ’|

• Using priority queues (aka binary heaps):
– Initially, store all characters in a priority queue wrt

the frequencies (as the keys)

– Removal of two nodes with lowest freqs: DELETEMIN

– Inserting of a new node: INSERT

– O(log n) operations DELETEMIN / INSERT�

O(n log n) time

4

Huffman codes

• Correctness:

Huffman codes-correctness

• Optimum tree (recall: not unique):
– Is a full binary tree (all internal nodes have 2 children)
– There is always an optimal tree in which two nodes with

minimum frequencies are siblings
• (if this is not the case in an optimal tree, we can always

replace one with the sibling of the other, getting an equally-
cheap tree)

– If we remove any two sibling leaves (but leave their parent)
then we’re left with an optimum tree for the same alphabet but
with a new char that replaces the two leaves – freq of this char
is freq of that node

• This is exactly what Huffman algorithm produces

Assume by induction that the algorithm works correctly for all
alphabets with less than n characters.

