

Huffman Coding

- Coding: each character \rightarrow unique binary string
- Example (not so good for compression): ASCII codes-each character uses 8 bits
 - Doesn't give good compression rate
- Different characters will have different lengths

 More frequent (common) characters will have shorter coding
 - letter "e" is most frequent ~ 12%
 - rare characters will have longer coding
 - letter "z" is very rare

Huffman coding

- · Easy to assign bit-strings to letters
- How to ensure (unique) reconstruction?

$A \rightarrow 01$	How to decode 010101
B → 0101	AB or BA or perhaps AAA?

Definition: Prefix codes:

no codeword is a prefix of another codeword

Huffman codes and full trees

- Given a file *X*, find a prefix code for the characters of *X* giving smallest encoding for *X*.
 - Frequent characters should have short codewords
 - Rare characters should have long codewords

· More practical scenario:

 Given frequencies of possible characters in a language, find a prefix code that gives smallest encoding of a string from the language

Huffman codes-cont

- Σ alphabet. *X* input file to encode.
- f(x) = how many times x appears X.
- Let w(x) denote the binary code of a char $x \in \Sigma$.
- The size of the encoded file is therefor $\sum_{x \in \Sigma} f(x) w(x)$
- The **depth** of a leaf w(x) of the encoding tree is the distance from the root to the leaf = |w(x)|
- Given a coding tree *T*, the cost of of the tree is $cost(T) = \sum_{x \in \Sigma} f(x) \operatorname{depth}(w(x))$

<u>Problem:</u> Find a tree *T* of minimum cost.

Credit for next several slides:

Nelson Padua-Perez and William Pugh

Huffman codes

• Correctness:

Huffman codes-correctness

Assume by induction that the algorithm works correctly for all alphabets with less than n characters.

• Optimum tree (recall: not unique):

- Is a full binary tree (all internal nodes have 2 children)
 There is always an optimal tree in which two nodes with minimum frequencies are siblings
- (if this is not the case in an optimal tree, we can always replace one with the sibling of the other, getting an equallycheap tree)
- If we remove any two sibling leaves (but leave their parent) then we're left with an optimum tree for the same alphabet but with a new char that replaces the two leaves – freq of this char is freq of that node
- · This is exactly what Huffman algorithm produces