SNS College of Engineering Coimbatore - 641107

Floyd's and warshall's algorithm

Warshall's algorithm

- Transitive closure of directed graph, with n vertices.
- It can be defined as n-by-n Boolean matrix
$T=\left\{t_{i j}\right\}$ elements in $i^{\text {th }}$ row $\& j^{\text {th }}$ column
($1<-\dot{\beta}<n$) $(1<j<=n)$

$$
\begin{gathered}
R^{0} \ldots R^{(k-1)}, R^{(K)} \ldots R^{(n)} \\
r_{i j}^{(k)}=r_{i j}^{(k-1)}
\end{gathered}
$$

CONDITIONS:

if an element.$r_{i j}$ is 1 in $R^{(k-1)}$, it remains 1 in R^{k}, it remains 1 in R^{k}
if an element.$r_{i j}$ is 1 in $R^{(k-1)}$, it remains 0 in R^{k}, it remains 1 in R^{k}
if \& only if element in $\mathrm{i}^{\text {th }}$ row $\& \mathrm{~K}$ column
if \& only if element in $\mathrm{j}^{\text {th }}$ column $\& \mathrm{~K}$ row

Algorithm

// implementing warshall and floyd for computing transitive closure
// I/P : Adjacency matrix A
// O/P : Transitive closure

$R^{(0)}<-A$ for $k<1$ to n do for $\mathrm{i}<-1$ to n do for $j<-1$ to n do
$R^{(k)}[1, j]<-R^{(k-1)}[1, j]$
Return $R^{(n)}$

Problem

Ones reflect the existence of paths with no intermediate vertices
($R^{(0)}$ is just the adjacency matrix): boxed row and column are used for getting $R^{(1)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex a (note a new path from d to b); boxed row and column are used for getting $R^{(2)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 2, i.e., a and b
(note two new paths);
boxed row and colurnn are used for getting $R^{(3)}$.
Ones reflect the existence of paths with intermediate vertices numbered not hiaher than 3, i.e.. a, b, and c (no new paths); boxed row and column are used for getting $R^{(4)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 4, i.e., a, b, c, and d (note five new paths).

Floyd's algorithm

- On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among 1,.., k as intermediate
$D(k)[i, j]=\min \{D(k-1)[i, j], D(k-1)[i, k]+D(k-1)[k, j]\} 1$ to n

Algorithm

ALGORITHM Floyd(W[1.n, 1..n])
/Implements Floyd's algorithm for the all-pairs shortest-paths problem /IInput: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths $D \leftarrow W /$ lis not necessary if W can be overwritten
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ tondo

$$
\begin{aligned}
& \text { for } j \leftarrow 1 \text { tondo } \\
& \qquad D[i, j] \leftarrow \min \{D[i, j], D[i, k]+D[k, j]\}
\end{aligned}
$$

return D

Problem

$D^{(0)}=$| a |
| :--- |
| b |
| c |
| d |\(\left[\begin{array}{c|ccc}a \& b \& c \& d

0 \& \infty \& 3 \& \infty

\hline 2 \& 0 \& \infty \& \infty

\infty \& 7 \& 0 \& 1

6 \& \infty \& \infty \& 0\end{array}\right]\)

$$
D^{(1)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\right]
$$

$$
D^{(2)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{cc|c|c}
a & b & c & d \\
0 & \infty & 3 & \infty \\
2 & 0 & 5 & \infty \\
\hline 9 & 7 & 0 & 1 \\
\hline 6 & \infty & 9 & 0
\end{array}\right]
$$

$$
D^{(3)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{ccc|c}
a & b & c & d \\
0 & \mathbf{1 0} & 3 & \mathbf{4} \\
2 & 0 & 5 & \mathbf{6} \\
9 & 7 & 0 & 1 \\
\hline 6 & \mathbf{1 6} & 9 & 0
\end{array}\right]
$$

$$
D^{(4)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{cccc}
a & b & c & d \\
0 & 10 & 3 & 4 \\
2 & 0 & 5 & 6 \\
7 & 7 & 0 & 1 \\
6 & 16 & 9 & 0
\end{array}\right]
$$

Lengths of the shortest paths with no intermediate vertices ($D^{(0)}$ is simply the woight matrix).

Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e. just a (note two new shortest paths from b to c and from d to c).

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e. a and b (note a new shortest path from c to a).

Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e. a, b, and c (note four new shortest paths from a to b. from a to d, from b to d, and from d to b).

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e. a, b, c, and d (note a new shortest path from c to a).

Analysis

$A(n, k)=$ sum for upper triangle + sum for the lower rectangle

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=1}^{n}+\sum_{k=1}^{n i} \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Activity

Time complexity $0\left(n^{3}\right)$ then $c(n)$ is

?

