## Greedy Method

## Introduction

- Problem can be solved by a sequence of decisions. The greedy method has that each decision is locally optimal. These locally optimal solutions will finally add up to a globally optimal solution.
- approaches:
$\checkmark$ Feasible
$\checkmark$ Locally optimal
$\checkmark$ Irrevocable


## MST

- A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such that the subgraph spans (includes) all nodes, is connected, is acyclic, and has minimum total edge weight
- Methods:
$\checkmark$ Prim's Algorithm
$\checkmark$ Kruskal's Algorithm


## Prim's Algorithm

- Consider a graph give below now, we will consider all the vertices first.
- Then we will select an edge with minimum weight.
- The algorithm proceeds by selecting adjacent edges with min weight.
- Care should be taken for not forming circuit.
- Analysis: $\Theta\left(v^{2}\right)$


## Algorithm

- muput: A connected weighted graph with vertices V and edges E.
- Output: $\mathrm{V}_{\text {new }}$ and $\mathrm{E}_{\text {new }}$ describe a minimal spanning tree
for $\mathrm{i} \leftarrow 0$ to nodes-1 do
tree $[\mathrm{i}] \leftarrow 0$
tree $[0] \leftarrow 1$
for $\mathrm{k} \leftarrow 1$ to nodes do
$\min$ dist $\leftarrow \infty$
for $\mathrm{i} \leftarrow 0$ to nodes -1
for $\mathrm{j} \leftarrow 0$ to nodes -1
if $(\mathrm{G}[\mathrm{i}, \mathrm{j}]$ AND (( tree[i] AND tree[j]) OR (tree[i] AND tree[j]))) then
if $(\mathrm{G}[\mathrm{i}, \mathrm{j}]<\min$ dist) then
$\min$ dist $\leftarrow \mathrm{G}[\mathrm{ij}]$
$\mathrm{v} 1 \leftarrow \mathrm{i}$
$\mathrm{v} 2 \leftarrow \mathrm{j}$
Write(v1,v2,min dist)
Tree[v1] $\leftarrow$ tree $[\mathrm{v} 2] \leftarrow 1$
Total $\leftarrow$ total + min dist
(2) Min weight. care shaild he
(2)

Torint weight $=0$
Step 31-


Total weight $=33$
Step5:-


Total weight $=64$ step7:-


## Kruskal's algorithm

- Consider a graph given below $1^{\text {st }}$ we will select all the vertices.
- Then an edge with optimum weight is selected from heap, even though it is not adjacent to previously selected edge.
- care should be taken for not forming circuit.
- Analysis : $\Theta(\mathrm{E} \log \mathrm{E})$


## Algorithm

Et $\leftarrow \phi$; encounter $\leftarrow 0$
$K \leftarrow 0$
While encounter < |v|-1 do
$\mathrm{K} \leqslant \mathrm{k}+1$
If Et u\{eik\} is acyclic
Et $\leftarrow E t \cup\{e i k\}$
Encounter <encounter+1 return Et
( $)$ total weight $=21$
Step4:-
Step 5:-

poral weight $=33$
Total werght $=47$
Step 6:-
Step7:-


Total weght $=67$


Priel weight $=90$

## DIJIKSTRA's Algorithm

- Single source shortest path problem the shortest distance from a single vertex called source is obtained.
- Let $G(V, E)$ be graph, find shortest path from vertex Vo to all remaining vertex.
- Vertex $\mathrm{V}_{0}$ is called source and last vertex is called destination.
- Time complexity O(n2)


## Algorithm

```
Single_short_path(p,cost,dist,n)
{
Fori<1ton do
{
S[i]<0;
Dist<cost[p,i];
}
S[p]<1
Dist [p]<0;
Forval<<2 to n-2 do
{
Dist[q]=min{dist[i]};
S[q]<1
For(all nodes r adjacent to q with s[r]=o)do
If(dist[r]>(dist[q]+cost[p,q]))then
Dist[r]<dist[q]+dist[p+q];
}
}
```



Vertex 1
$\{1,2\}=10$
$\{1,3\}=\infty$
$\{1,4\}=\infty$
$\{1,5\}=\infty$
$\{1,6\}=30$
$\{1,7\}=\infty$
Min dist is $\{1,2\}=10$

Vertex 3
$\{1,2,3\}=30$
$\{1,2,4\}=\infty$
$\{1,2,7\}=\infty$
$\{1,2,5\}=\infty$
$\{1,2,6\}=\infty$
Min dist $\{1,2,3\}=30$
Vertex 5
$\{1,2,3,4\}=45$
$\{1,2,3,5\}=35$
$\{1,2,3,6\}=\infty$
$\{1,2,3,7\}=\infty$
Min dist $\{1,2,3,5\}=35$

## Vertex 7

$\{1,2,3,5,6\}=\infty$
$\{1,2,3,5,7\}=42$
Min dist $\{1,2,3,5,7\}=42$

| Path | Weight |
| :--- | :--- |
| 1,2 | 10 |
| $1,2,3$ | 30 |
| $1,2,3,4$ | 45 |
| $1,2,3,5$ | 35 |
| $1,2,3,4,7$ | 45 |
| $1,2,3,5,7$ | 42 |
| 1,6 | 30 |
| $1,6,7$ | 65 |

## Huffman algorithm

- Generates high frequency with min no of bits.
- Generates low frequency with max no of bits.
- It is bottom up approach.
- Steps to be followed:
$\checkmark$ Arrange the given message sources in descending order.
$\checkmark$ Add last 2 source symbol into single unit \& consider it as new source.
$\checkmark$ Arrange source in descending order. Consider new message source obtained in step 2.
$\checkmark$ Continue process until only 2 new source messages are left.
$\checkmark$ Start assigning codes(0,1) in backward direction towards initial stage.

