SNS College of Engineering Coimbatore - 641107

Floyd's and warshall's algorithm

Warshall's algorithm

- Transitive closure of directed graph, with n vertices.
- It can be defined as n-by-n Boolean matrix
$\mathrm{T}=\left\{\mathrm{t}_{\mathrm{ij}}\right\}$ elements in $\mathrm{i}^{\text {th }}$ row $\& \mathrm{j}^{\text {th }}$ column

$$
\begin{gathered}
(1<=i<=n)(1<=j<=n) \\
R^{0} \ldots . R^{(k-1)}, R^{(k)} \ldots R^{(n)} \\
r_{i j}^{(k)}=r_{i j}^{(k-1)}
\end{gathered}
$$

CONDITIONS:

if an element. r_{ij} is 1 in $\mathrm{R}^{(\mathrm{k}-1)}$, it remains 1 in R^{k}, it remains 1 in R^{k}
if an element. r_{ij} is 1 in $\mathrm{R}^{(\mathrm{k}-1)}$, it remains 0 in R^{k}, it remains 1 in R^{k}
if \& only if element in $\mathrm{i}^{\text {th }}$ row \& K column
if \& only if element in $\mathrm{j}^{\text {th }}$ column \& K row

Algorithm

// implementing warshall and floyd for computing transitive closure
// I/P : Adjacency matrix A
// O/P : Transitive closure
$\mathrm{R}^{(0)}<-\mathrm{A}$
for $k<-1$ to n do
for $\mathrm{i}<-1$ to n do
for $\mathrm{j}<-1$ to n do
$R^{(k)}[1, j]<-R^{(k-1)}[1, j]$
Return $\mathrm{R}^{(\mathrm{n})}$

Problem

$$
R^{(0)}=\begin{gathered}
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{llll}
a & b & c & d \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Ones reflect the existence of paths with no intermediate vertices ($R^{(0)}$ is just the adjacency matrix); boxed row and column are used for getting $R^{(1)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex a (note a new path from d to b); boxed row and column are used for getting $R^{(2)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 2 , i.e., a and b (note two new paths);
boxed row and colurmn are used for getting $R^{(3)}$.
Ones reflect the existence of paths with intermediate vertices numbered not higher than 3. i.e.. a. b. and c (no new paths);
boxed row and column are used for getting $R^{(4)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 4, i.e., a, b, c, and d (note five new paths).

Floyd's algorithm

- On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among $1, \ldots, k$ as intermediate
$D(k)[i, j]=\min \{D(k-1)[i, j], D(k-1)[i, k]+D(k-1)[k, j]\} 1$ to n

Algorithm

ALGORITHM Floyd(W[1.n, 1.n])
/Implements Floyd's algorithm for the all-pairs shortest-paths problem /Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths
$D \leftarrow W /$ is not necessary if W can be overwritten
for $k \leftarrow 1$ to n do

$$
\text { for } i \leftarrow 1 \text { to } n \text { do }
$$

$$
\begin{aligned}
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \qquad D[i, j] \leftarrow \min \{D[i, j], D[i, k]+D[k, j]\}
\end{aligned}
$$

return D

Problem

$$
D^{(0)}=\begin{gathered}
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{c|ccc}
a & b & c & d \\
\hline 0 & \infty & 3 & \infty \\
\hline 2 & 0 & \infty & \infty \\
\infty & 7 & 0 & 1 \\
6 & \infty & \infty & 0
\end{array}\right]
$$

Lengths of the shortest paths with no intermediate vertices ($D^{(0)}$ is simply the woight matrix).

$$
D^{(1)}=\begin{gathered}
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{ccccc}
a & c & c & c & d \\
0 & \infty & 3 & \infty \\
\hline 2 & 0 & 5 & \infty \\
\hline 6 & 7 & 0 & 1 \\
\cline { 2 - 4 } & \infty & 9 & 0
\end{array}\right]
$$

Lengths of the shortest paths with intermediate vertices numbered not higher than 1 , i.e. just a (note two new shortest paths from b to c and from d to c).

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e. a and b (note a new shortest path from c to a).

Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e. a, b, and c (note four new shortest paths from a to b, from a to d, from b to d, and from d to b).

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e. a, b, c, and d (note a new shortest path from c to a).

Analysis

$A(n, k)=$ sum for upper triangle + sum for the lower rectangle

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=1}^{n}+\sum_{k=1}^{n} i \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Activity

Time complexity $O\left(n^{3}\right)$ then $c(n)$ is

?

