

SNS College of Engineering Coimbatore - 641107

Floyd's and warshall's algorithm

Warshall's algorithm

- Transitive closure of directed graph, with n vertices.
- It can be defined as n-by-n Boolean matrix

 $T=\{t_{ij}\} \text{ elements in } i^{th} row \& j^{th} column \\ (1<=i<=n) (1<=j<=n)$

$$R^{0}...R^{(k-1)}, R^{(K)}...R^{(n)}$$

 $r_{ij}^{(k)} = r_{ij}^{(k-1)}$

if an element $.r_{ij} \mbox{ is } 1 \mbox{ in } R^{(k-1)} \mbox{, it remains } 1 \mbox{ in } R^k \mbox{, it remains } 1 \mbox{ in } R^k$

if an element $.r_{ij}$ is 1 in $R^{(k\text{-}1)}\!,$ it remains 0 in $R^k\,,$ it remains 1 in R^k

if & only if element in i^{th} row & K column if & only if element in j^{th} column & K row

Algorithm

// implementing warshall and floyd for computing transitive
 closure

- // I/P : Adjacency matrix A
- // O/P : Transitive closure

```
R<sup>(0)</sup> <- A
for k<-1 to n do
for i<- 1 to n do
for j<-1 to n do
R<sup>(k)</sup>[I,j]<- R<sup>(k-1)</sup> [I,j]
Return R<sup>(n)</sup>
```


Problem

		Б	a	Ь	c	d a	
ų v		a ,	0	1	0		
	$R^{(0)} =$	D	0	0	0	1	
		c	0	0	0	0	
		d	1	0	1	0	
0 0		_	а	b	с	d _	
		a	0	1	0	07	
	- (4)	ьΙ	0	0	0	1	
	$R^{(1)} =$	c	0	0	0		
		d	1	1	1	ōl	
		۳L	· · ·	•	•	Ľ	
		_	а	ь.	с	d _	
		a	0	1	0	1	
	0(2)	Ь	0	0	0	1	
	R(2) =	c	0	0	0	0	
		d	1	1	1	1	
		L		. `			
		Г	a	D	C		
		a	0	1	0	1	
	$R^{(3)} =$	Ы	0	0	0	1	
		C .	0	0	0	0	
		d	1	1	1	1	
				b	C	d	
		аГ	1	ĩ	ĭ	17	
		2	1	1	1	1	
	$R^{(4)} =$	2				. I	
		C.	0	0	0	0	
		aL	. 1	1	1	ן י	

Ones reflect the existence of paths with no intermediate vertices $(R^{(0)}$ is just the adjacency matrix); boxed row and column are used for getting $R^{(1)}$.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 1, i.e., just vertex *a* (note a new path from *d* to *b*); boxed row and column are used for getting *R*⁽²⁾.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 2, i.e., *a* and *b* (note two new paths); boxed row and column are used for getting *R*⁽³⁾.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 3, i.e., *a*, *b*, and *c* (no new paths);

boxed row and column are used for getting R⁽⁴⁾.

Ones reflect the existence of paths with intermediate vertices numbered not higher than 4, i.e., *a*, *b*, *c*, and *d* (note five new paths).

Floyd's algorithm

 On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among 1,...,k as intermediate

 $D(k) [i,j] = min \{D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]\} 1 to n$

ALGORITHM

Algorithm *Floyd*(*W*[1..*n*, 1..*n*])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem //Input: The weight matrix W of a graph with no negative-length cycle //Output: The distance matrix of the shortest paths' lengths $D \leftarrow W$ //is not necessary if W can be overwritten for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}$ return D

Problem

2 (b)			_ a	ь	С	d
		а	0	~	з	~
6 7	0(0)	ь	2	0	~	∞
	$D^{(0)} \equiv$	c	∞	7	0	1
_ (d)		d	6	~	~	0
			a	Ь	С	d
		а	0	8	3	∞
	0(1) -	b	2	0	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	<i>D</i> =	С	~~~	7	0	1
		d	6	~	9	0
			a	b	с	d
		а	0	∞ [3	~
	0(2)	b	2	0	5	00
	$D^{(2)} \equiv$	С	9	7	0	1
		d	6	~	9	0
			a	Ь	с	d
		а	0	10	3	4
	0(3)	b	2	0	5	6
	$D^{(3)} \equiv$	с	9	7	0	1
		d	6	16	9	0
			_ 	ь	0	d
		a	Го	10	з	4
	-	ь	2	0	5	6
	$D^{(4)} =$	с	7	7	0	1
		d	6	16	9	Ó
		-	L		-	

Lengths of the shortest paths with no intermediate vertices $(D^{(0)} \text{ is simply the weight matrix}).$

Lengths of the shortest paths with intermediate vertices numbered not higher than 1, i.e. just *a* (note two new shortest paths from *b* to *c* and from *d* to *c*).

Lengths of the shortest paths with intermediate vertices numbered not higher than 2, i.e. a and b (note a new shortest path from c to a).

Lengths of the shortest paths with intermediate vertices numbered not higher than 3, i.e. a, b, and c (note four new shortest paths from a to b, from a to d, from b to d, and from d to b).

Lengths of the shortest paths with intermediate vertices numbered not higher than 4, i.e. a, *b*, *c*, and *d* (note a new shortest path from *c* to *a*).

Analysis

A(n, k) = sum for upper triangle + sum for the lower rectangle

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} + \sum_{k=1}^{n} i$$
$$= \Theta(n^3)$$

Activity

Time complexity $O(n^3)$ then c(n) is ?