SNS College of Engineering

Coimbatore - 641107

Computing Binomial Co-efficients

Dynamic Programming

- Dynamic - changing
- Programming- Planning

Lynamic Languages

Programming Language

Principle of optimality

sequence of decision making

Computing binomial coefficier sis

- Computing binomial coefficients is non optimization problem but can be solved using dynamic programming.
- Binomial coefficients are represented by $C(n, k)$ or $\binom{n_{k}}{k}$ and can be used to represent the coefficients of a binomail:

$$
(a+b)^{n}=C(n, 0) a^{n}+\ldots+C(n, k) a^{n-k b k}+\ldots+C(n, n) b^{n}
$$

- The recursive relation is defined by the prior power

$$
\begin{aligned}
& C(n, k)=C(n-1, k-1)+C(n-1, k) \text { for } n>k>0 \\
& \text { IC } C(n, 0)=C(n, n)=1
\end{aligned}
$$

$N^{*} k$ table

Algorithm

Algorithm Binomial(n, k)
for $i \leftarrow 0$ to n do // fill out the table row wise for $i=0$ to $\min (i, k)$ do
if $j==0$ or $j==i$ then $C[i, j] \leftarrow 1 / /$ IC
else $C[i, j] \leftarrow C[i-1, j-1]+C[i-1, j] / /$ recursive relation
return $C[n, k]$

Analysis

$A(n, k)=$ sum for upper triangle + sum for the lower rectangle
$=\sum_{i=1}{ }^{k} \sum_{j=1}^{i-1} 1+\sum_{i=1}{ }^{n} \sum_{j=1}{ }^{k} 1$
$=\sum_{i=1}{ }^{k}(i-1)+\sum_{i=1}{ }^{n} k$
$=(k-1) k / 2+k(n-k) \varepsilon \Theta(n k)$

Activity

