

SNS COLLEGE OF ENGINEERING

(Autonomous) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

19EC601 – Wireless Communication

Unit -1 Cellular Concepts

Introduction.

- Frequency reuse concept.
- Channel assignment strategies.

- Solves the problem of spectral congestion and user capacity.
- Offer very high capacity in a limited spectrum without major technological changes.
- Reuse of radio channel in different cells.
- Enable a fix number of channels to serve an arbitrarily large number of users by reusing the channel throughout the coverage region.

ire region without

 Geometric shapes covering an entire region without overlap and with equal area.

small geographic area called a *cell*.

By using the hexagon, the fewest number of cells can cover a geographic region, and the hexagon closely approximates a circular radiation pattern which would occur for an omni-directional antenna.

Each cellular base station is allocated a group of radio channels within a

Cell Shapes

- Neighboring cells are assigned different channel groups.
- By limiting the coverage area to within the boundary of the cell, the channel groups may be reused to cover different cells.
- Keep interference levels within tolerable limits.
- Frequency reuse or frequency planning.
- seven groups of channel from A to G
- footprint of a cell actual radio coverage
- omni-directional antenna v.s. directional antenna

Consider a cellular system which has a total of *S* duplex channels. Each cell is allocated a group of *k* channels, $k \in S$. The *S* channels are divided among *N* cells. The total number of available radio channels

S = kN

The *N* cells which use the complete set of channels is called *cluster*. The cluster can be repeated *M* times within the system. The total number of channels, *C*, is used as a measure of capacity

C = MkN = MS

The capacity is directly proportional to the number of replication M. The cluster size, N, is typically equal to 4, 7, or 12. Small N is desirable to maximize capacity. The frequency reuse factor is given by 1/N

i=2

Fig: Frequency reuse

19EC601/ WC / D.Vishnu Priya / Unit 1/ Fundamentals of wireless communication

Frequency Reuse: Excitation modes

- Center-excited cell
 - Base station transmitter is in the center of the cell.
 - Omni-directional antennas are used.
- Edge-excited cell
 - Base station transmitters are on three of the six cell vertices.
 - Sectored directional antennas are used.

19EC601/ WC / D.Vishnu Priya / Unit 1/ Fundamentals of wireless communication

19EC601/ WC / D.Vishnu Priya / Unit 1/ Fundamentals of wireless communication

- Objectives:
 - Increasing capacity
 - Minimizing interference
- Classification:
 - Fixed channel assignment strategies
 - Dynamic channel assignment strategies

Fixed channel assignment

- Each cell is allocated a predetermined set of voice channel
- Any new call attempt can only be served by the unused channels
- The call will be *blocked* if all channels in that cell are occupied

- Channels are not allocated to cells permanently.
- Allocate channels based on request.
- Reduce the likelihood of blocking, increase capacity.

19EC601/ WC / D.Vishnu Priya / Unit 1/ Fundamentals of wireless communication