
19IT103 – COMPUTATIONAL THINKING

AND PYTHON PROGRAMMING

 A readable, dynamic, pleasant, flexible, fast and powerful

language

SNS COLLEGE OF ENGINEERING

 Kurumbapalayam (Po), Coimbatore – 641 107

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Objective

Files and exception: text files, reading and writing files,

format operator; command line arguments, errors and

exceptions, handling exceptions, modules, packages;

Illustrative programs: word count, copy file, Voter’s age

validation, Marks range validation (0-100).

RECAP

An exception is an event, which occurs during the

execution of a program, that disrupts the normal flow of

the program's instructions.

● Handling Exceptions

● Raising an exceptions

● User-Defined Exceptions

Modules in Python

Modules in python

Modules in Python are simply Python files with a .py

extension. The name of the module will be the name of the

file. A Python module can have a set of functions, classes or

variables defined and implemented.

What are Modules?

• Modules are files containing Python definitions and

statements (ex. name.py)

• A module’s definitions can be imported into other
modules by using “import name”

• The module’s name is available as a global variable value

• To access a module’s functions, type “name.function()”

More on Modules

 Modules can contain executable statements along with function
definitions

 Each module has its own private symbol table used as the global
symbol table by all functions in the module

 Modules can import other modules

 Each module is imported once per interpreter session
 reload(name)

 Can import names from a module into the importing module’s
symbol table
 from mod import m1, m2 (or *)
 m1()

Executing Modules

• python name.py <arguments>

• Runs code as if it was imported

• Setting _name_ == “_main_” the file can be used as a script and
an importable module

The Module Search Path

• The interpreter searches for a file named name.py

• Current directory given by variable sys.path

• List of directories specified by PYTHONPATH

• Default path (in UNIX - .:/usr/local/lib/python)

• Script being run should not have the same name as a

standard module or an error will occur when the module

is imported

“Compiled” Python Files

 If files mod.pyc and mod.py are in the same directory, there is a
byte-compiled version of the module mod

 The modification time of the version of mod.py used to create
mod.pyc is stored in mod.pyc

Normally, the user does not need to do anything to create the
.pyc file

A compiled .py file is written to the .pyc
 No error for failed attempt, .pyc is recognized as invalid

 Contents of the .pyc can be shared by different machines

Some Tips

 -O flag generates optimized code and stores it in .pyo files
 Only removes assert statements

 .pyc files are ignored and .py files are compiled to optimized bytecode

 Passing two –OO flags
 Can result in malfunctioning programs

 doc strings are removed

 Same speed when read from .pyc, .pyo, or .py files, .pyo and .pyc files are
loaded faster

 Startup time of a script can be reduced by moving its code to a module
and importing the module

 Can have a .pyc or .pyo file without having a .py file for the same module

 Module compileall creates .pyc or .pyo files for all modules in a directory

Standard Modules

 Python comes with a library of standard modules described in the Python Library
Reference

 Some are built into interpreter

 >>> import sys
 >>> sys.s1
 ‘>>> ‘
 >>> sys.s1 = ‘c> ‘
 c> print ‘Hello’
 Hello
 c>
 sys.path determines the interpreters’s search path for modules, with the default

path taken from PYTHONPATH

 Can be modified with append() (ex. Sys.path.append(‘SOMEPATH’)

The dir() Function

• Used to find the names a module defines and returns a sorted
list of strings

• >>> import mod

 >>> dir(mod)

 [‘_name_’, ‘m1’, ‘m2’]

• Without arguments, it lists the names currently defined
(variables, modules, functions, etc)

• Does not list names of built-in functions and variables

• Use _bulltin_to view all built-in functions and variables

Why we need them ?

To take advantage of modular programming:

Modular programming refers to the process of breaking a

large, unwieldy programming task into separate, smaller, more

manageable subtasks or modules. Individual modules can then

be cobbled together like building blocks to create a larger

application

Advantages

● Simplicity

● Maintainability

● Reusability

● Scoping

Usage

Basicmath.py (module contains useful

arithmetic functions)

Main.py using the math

module

SUMMARY

Modules in Python are simply Python files with a .py

extension.

● Executing Modules

● Standard Modules

● dir() Function

