SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore - 641 107
~—

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING S
FITYTIONS

&, python

191T103 - COMPUTATIONAL THINKING
AND PYTHON PROGRAMMING

% A readable, dynamic, pleasant, flexible, fast and powerful
language

Objective

Files and exception: text files, reading and writing files,
format operator; command line arguments, errors and
exceptions, handling exceptions, modules, packages;
Illustrative programs: word count, copy file, Voter’s age
validation, Marks range validation (0-100).

RECAP

Python uses C-style string formatting to create new,
formatted strings. The "%" operator 1is used to format a
set of variables enclosed in a "tuple" (a fixed size
list), together with a format string, which contains
normal text together with "argument specifiers", special
symbols like "%s" and "%d".

Command-1line arguments are a common way to parameterize
execution of programs.

We can pass the parameters while running the program.

sys i1s module that helps to parse the arguments

Errors and Exception

We can make certain mistakes while writing a program that
lead to errors when we try to run 1it. A python program
terminates as soon as it encounters an unhandled error. These
errors can be broadly classified into two classes:

® Syntax errors
® |ogical errors (Exceptions)

Syntax Errors

* An error of language resulting from code that does not
conform to the syntax of the programming language.

Missing “’

>>> while True print 'Hello world

: : : — File name and line
File "«gtdin>", line 1, 1in =
............................ oo e number of the error

while True print 'Hello world'

SyntaxError: invalid syntax

..

Syntax Error

—_—— main.py
1 a = 20
2 if (a¥%2==0)
3 print('even')
4 else:
5 print('odd")

https://cmd-args kiteit.repl.run

- python main.py
File "main.py", line 2

if (a%2==0)

SyntaxError: invalid syntax

Missing “’ }

Exceptions

* Even if a statement or expression is syntactically correct, it
may cause an error when an attempt is made to execute it.

o 0 * 414Q)

Traceback (most recent call last)
File "<graim>t, iine L, 1n.2 The types of exceptions

ZeroDivisionError: integer division or modulo by zero

o in the example are:
>>> 4 + spam?

et ks merat e e *ZeroDivisionError
segesibaklh WibVol LELTilL Lall laou) .
| File "<stdin>", line 1, in ? *NameError

NameError: name 'spam' is not defined *TypeError

>3 121
Traceback (most recent call last)
File stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

¢ Built-in Exceptions lists the built-in exceptions and their meanings.

Exceptions (Logical Errors)

main.py

1

[T o R N W R S

import sys
cmdargs=sys.argv;

valuel = 10

value2 = @

result = valuel / value2;
print("result:",result)

https:f/cmd-args.kiteit.repl.run

» python main.py
Traceback (most recent call last):

File "main.py",
result = valuel / wvalue2;

o

/

line 5, in <module>

program

syntactically
correct

But (logically
wrong)

~

)

Handling Exceptions

* To write programs that handle selected
exceptions(try statement) .

> while True:
3 &

* The try statement works as follows:
— the try clause (the statement(s) between the try and except) is

executed.
— When no exception occurs in the try clause, no exception handler
is executed.

— When an exception occurs in the try clause, a search for an
exception handler is started.

Handling Exceptions(Cont’d)

* A try statement may have more than one except clause
to specify handlers for different exceptions.

* An except clause may name multiple exceptions as a
parenthesized tuple, for example:

. except (P;nt;:eE;:;;, TypeError, Iaig;::;;):

pass

Handling Exceptions(Cont’d)

* The try ... except statement has an optional else clause.
* Else clause must follow all except clauses.

for arg in sys.argv(l:]:|
try:
open (arg, 'r')
except IOError:
print ‘cannot open', arg
else:
print arqg, 'has', len(f.readlines()), '

f.close()

Exception argument

When an exception occurs, it may have an associated value--
exception’s argument.

The except clause may specify a variable after the exception
name. The two arguments stored in instance.args.

The exception instance defines str () so the arguments
can be printed directly.

arguments

Handling Exceptions(Cont’d)

* An exception can occur inside functions that
are called in the try clause. For example:

Raising Exceptions

* The raise statement allows the programmer to
force a specified exception to occur.

>>> raise NameErrcr('hf”}brf*)
Lraceback (mest recent eall last):
File "<stdin>", line 1; 1

NameError: HiThere

Raising Exceptions(Cont’d)

* The raise statement allows you to re-raise the
exception:

>>> try:
. except NameError:
Print 'An exception flew by!l?

raise

An exception flew by!
Traceback (most recent call 1a:

as
File "<etdins",; l1ine 2, 1n 7

NameError: HiThere

User-defined Exceptions

To create a new exception class to have own exceptions.

Exceptions should typically be derived from the Exception
class, either directly or indirectly.

>>> class MyError (Exception) :

def 1nit (self, value):

sell ., Value = VvValue

>>> txy.:
raise MyError (2*2)
. except MyError as e:
print 'My exception occurred, value:'

My exception occurred, value: 4
>>> raise MyError('oops!')

Traceback (most recen

User-defined Exceptions(Cont’d)

* Offering a
number of
_________ attributes
o
class TransitionError (Exror): d |ffe 2 nt
exceptions.

Defining Clean-up Actions

* The try statement has another optional clause, finally clause
* A finally clause is intended to define clean-up actions

m f1nally clause
> d-i-u~| 2.)

division by zergl—"
Iy e ot y <«

executing finally clause

>>> J-ﬁ;gex”- =

xecutxng f1na11y clause

m

The two exceptions
are handled by the
except clause

A finally clause is
executed in any event.
**A finally clause is
always executed
before leaving the try
statement

The TypeError raised by
dividing two strings and
therefore re-raised after
the finally clause has been
executed

Predefined Clean-up Actions

 Some objects define standard clean-up actions to be
undertaken when the object is no longer needed.

4= 1

print e

¢ The problem with this code is that it leaves the file open
after the code has finished executing. This is not an issue in
simple scripts, but can be a problem for larger applications.

Predefined Clean-up Actions(Cont’d)

* The with statement allows objects like files to be used in a way that
ensures they are always cleaned up promptly and correctly.

with open("myfile.txXt™) as I:

—

for lihe an .1

print line

s After the statement is executed, the file f is always closed.

Python Built in exceptions

Exception
AssertionError
AttributeError

EOFError

FloatingPointError

GeneratorExit

ImportError

IndexError

KeyError

Cause of Error

Raised when an assert statement fails.

Raised when attribute assignment or reference fails.

Raised when the input() function hits end-of-file condition.
Raised when a floating point operation fails.

Raise when a generator's close() method is called.

Raised when the imported module is not found.

Raised when the index of a sequence is out of range.

Raised when a key is not found in a dictionary.

Python Built in exceptions

KeyboardInterrupt

MemoryError

NameError

NotImplementedError

0SError

OverflowError

ReferenceError

RuntimeError

Raised when the user hits the interrupt key (Ctr1+C or Delete).
Raised when an operation runs out of memory.

Raised when a variable is not found in local or global scope.
Raised by abstract methods.

Raised when system operation causes system related error.

Raised when the result of an arithmetic operation is too large to
be represented.

Raised when a weak reference proxy is used to access a garbage
collected referent.

Raised when an error does not fall under any other category.

Python Built in exceptions

- Raised by next() function to indicate that there is no further

Stoplteration))

item to be returned by iterator.
SyntaxError Raised by parser when syntax error is encountered.
IndentationError Raised when there is incorrect indentation.

Raised when indentation consists of inconsistent tabs and
TabError

spaces.
SystemError Raised when interpreter detects internal error.
SystemExit Raised by sys.exit() function.

Raised when a function or operation is applied to an object of
TypeError

incorrect type.

Python Built in exceptions

Raised when a reference is made to a local variable in a function

UnboundLocalError
or method, but no value has been bound to that variable.
: Raised when a Unicode-related encoding or decoding error
UnicodeError
occurs.
UnicodeEncodeError Raised when a Unicode-related error occurs during encoding.
UnicodeDecodeError Raised when a Unicode-related error occurs during decoding.
UnicodeTranslateError Raised when a Unicode-related error occurs during translating.
Raised when a function gets an argument of correct type but
ValueError .
improper value.
o Raised when the second operand of division or modulo operation
ZeroDivisionError

Is zero.

SUMMARY

A python program terminates as soon as 1t encounters an
unhandled error. These errors can be broadly classified
into two classes:

® Syntax errors
® |ogical errors (Exceptions)

