SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107 - o
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING IO

&, python

191T103 - COMPUTATIONAL THINKING
AND PYTHON PROGRAMMING

% A readable, dynamic, pleasant, flexible, fast and powerful
language



-

Session wise Agenda

e session | - List (Operations, Slice, Methods)

e Session 2 - List (Loop, Mutability)

e Session 3 - List (Aliasing, Cloning, Parameters)

e Session 4 - Tuples (Assighment, as return value)

* Session 5 - Dictionaries (operations and methods)

e Session 6 - Advance List processing, List Comprehension
* Session 7 - Simple Sort, Histogram

* Session 8 - Student Mark Statement

e Session 9 - Retail Bill preparation



Recap

e List is a sequence data type which can be

traversed in 8 different ways

» List are Mutable = the values in the list
can be changed. This process is called

mutability



\/ List Aliasing

* Intisa single st object s created and modfied using the subscript operator.

N
A\
A
\
{
/I
/
| ST dlescial

" Whenthe st lment ofthe it amed 4 i replaced, the frst element of the list named D" is
al30 replaced.
Y i type of change 15 what 15 known as a side effect. This happens because after the

asmgnmen tb=a, the variables a andb refer to the exact same listobject

) They are aliases for the same object. This phenomenon s known as aliasing
" To prevent aliasing, a new object can be created and the contents of the original can be copied

whichis called cloning



List Aliasing

a=[1,2,3,4,5]
bh=a

print(b)
print(b is a)
af0]=100
print(a,"\n",b)

[1, 2, 3, 4, 5]
True

[100, 2, 3, 4, 5]
[100, 2, 3, 4, 5]




List Aliasing

x = [10,20,20,40,50]

v =X #xis aliased as vy

print(x} will display [10,20,20,40,50]
print (v} will display [10,20,30,40,50]

x[1] = 99 #modify Ist element in x
print («} will displary [10,86,30,40,50]
print(y} will display [10,99,30,40,50]

10 | 20 | 30 | 40

Before modification

10 | 99 | 30

After modification




List Cloning

e To avoid the disadvantages of copying we are
using cloning. creating a copy of a same list of
elements with two different memory locations
is called cloning.

* Changes in one list will not affect locations of

another list.



Cloning using Slicing

a=[1,2,3,4,5]
p=al :]

print(b)
print(b is a)

She

[1, 2, 3, 4, 5]
False




Cloning using List( ) method

mdain.py

1 a=[1,2,3,4,5]
2 b=list(a)

3 print(b)

4 print(a is b)
5 a[0l=100

6 princ(aj

7

print(b)

She

[1, 2, 3, 4, 5]
False

(100, 2, 3, 4, 5]
[1, 2, 3, 4, 5]




Cloning using copy() method

main.py

1 a=[1,2,3,4,5] She

2 b=a.copy()

3 print(b) [1, 2, 3, 4, 5]
4 print(a is b)  False




L

List Cloning

y=x[:] #xisclonedasy

x = [10,20,30,40,50]

y =x[:] #xis cloned asy

print{x) will display [10,20,30,40,50]

print(y) will display [10,20,30,40,50]

x[1] = 99 #modify 1st alement inx

print{(x) will display [10,99,30,40,50]

print(y) will display [10,20,30,40,50]

¥ >~ 10 |20 | 30 | a0 | s0

Y~ 10 |20 | 30 |40 | s0
Before modification

* ™~ 10 | 99 | 30 | 20 | s0

Y~ 10 |20 | 30 | 40 | so

After modification




List Cloning

8 Ways to Clone / Copy a List

Using Functions / Operations

1.Use slicing - bl = al[:] (apparently, the fastest technique)
2.Use list comprehension bl = [elem for elem in al ]
3.Use list() function

Using Methods

4. Use the .copy method - bl = al.copy()

5. Using .extend method

6. Using .append method

Using Modules

7. Use copy.copy()

8. Use copy.deecopy()



List Cloning

Refer the above link for 8 types of
cloning


https://www.geeksforgeeks.org/python-cloning-copying-list/
https://www.geeksforgeeks.org/python-cloning-copying-list/
https://www.geeksforgeeks.org/python-cloning-copying-list/
https://www.geeksforgeeks.org/python-cloning-copying-list/
https://www.geeksforgeeks.org/python-cloning-copying-list/
https://www.geeksforgeeks.org/python-cloning-copying-list/
https://www.geeksforgeeks.org/python-cloning-copying-list/
https://www.geeksforgeeks.org/python-cloning-copying-list/

List as Parameters

* In python, arguments are passed by reference.

e If any changes are done in the parameter which
refers within the function, then the changes also
reflects back in the calling function.

e Passing a list as an argument actually passes a
reference to the list, not a copy of the list.

e Since lists are mutable, changes made to the
elements referenced by the parameter change the

same list that the argument is referencing.



List as Parameters

main.py

1~ def inside(a):
2~ for i in range(0,len{a),1):

3 afi]=a[i]+10
print("inside",a)
a=[1,2,3,4,5]
inside(a)
print("outside",a)

She

inside [11, 12, 13, 14, 15]
oucside [11, 12, 13, 14, 15]




List as Parameters

def my functioni(food):
for x in food:

primtix)

fruits = [fapple”, "banana™, “cherry"]

my function{fruits)

def append teni{a List
a_ list.append( 1®
return a List

print{append_teni([1, 2, 3




List as Parameters

def sum_List elements{a list):
sum = @
for i in range(lenf(a_List)):
sum += a_ list[i]
return sum

print(sum_List_elements{[1, 2, 3, 4, 5]}




Summary

 Aliasing = copying the List i.e. the memory will be same
for both the List variables. If any changes made in one list
will affect other.

e Cloning = copying the List but the memory location is
different. If any changes made in one list will not affect
other.

o List as Parameter —> List is passed as parameter to a
function i.e. as Call by Reference (Address). If any changes
made in the list inside function the change will occur in

the calling function also



£

THANKYOU



